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however. The second model (II) does account for keel structure and assigns the
gaussian components of the first model respectively to two distinct physical pro-
cesses: that of local ice generation {prO -C- , ef-;S, and that of the inter-
mittent, large-scale keel formation, [process K and elevation K]. Two variants
of II are also distinguished here. '

The empirical basis for these models is the underice historgram of Lyon [1],
[2], which can be interpreted to support the concept of a distinct keel structure
(Model II),-although the precse existence of the latter is subject to some dis-
pute [3]. On physical grounds it appears reasonable to treat the formation of
the comparatively small- and large-scale ice structures as separate physical pro-
cesses, each the resultant of many effectively independent forces, so that
gaussian elevations follow (at least approximately), as indicated by the Lyon
data.

- In this Report the analysis is limited to Model I and calculations of back-
scattering cross sections appropriate to intermediate and high frequencies
{o() 0.1 kHz), i.e., Kirchoff-based methods. The treatment here is also re-
stricted, for the moment, to zero gradient {Vc-Oy and single ice bottom surface
interactions. In most instances, the Rayleigh numbers for both components of the
underice surface are large, so that theories based solely on perturbation tech-
niques and/or Bragg scatter are inadequate. . ...

The construction of second-order characteristic functions (c.f.'s) of the
underice profile C is accordingly required. The second-order c.f. is modeled
here by a single gauss process, whose first-order moments are those determined
from the two-component, first-order gauss process fitted to the Lyon data.
Because of the large Rayleigh numbers involved, an (artificial) splitting of the
surface wave number spectrum must be made, to separate the "rough" (i.e.,
Kirchoff) components from the Bragg (i.e., "smooth") components of the scattering
surfaces. The analytic methods and results used here are direct modifications
of the author's recent studies of scattering from moving ocean wave surfaces [4].
The present treatment is directly applicable to intermediate 0(>100 Hz) and high
frequencies o(> 1.0 kliz).

In addition to the analytic results for scattering cross sections developed
here for Model I, it is found that the simple, single surface version (Model Ia)
is inadequate to account for the (much) larger empirical (back-)scatter cross
sections observed, particularly at small grazing angles (p = 100) and high fre-quencies (fo = I kliz). Accordingly, a two-component version (M~odel Ib) is pro-
posed, where now an additional, independent surface projection rides on the

single surface of Model Ia. RMS elevations O(Gk = 8-15 cm) and correlation dis-
tances 0(tc = 4-7 cm) for this second surface component are required for reason-
able agreement with the data cited [5], [24]. It is emphasized that, at the
present stage of limited available data, it is the choice of parameter values,
rather than any specific analytic model form, which is critical to the potential
applicability of the model in question.

The results developed here also indicate the need for: (1), profile eleva-
tion statistics with a much finer resolution than presently available, say
O(Xo = 6 m - 1 cm), with particular emphasis on the range 0(20 cm - 1 cm);
(2), (rms) slopes and slope statistics; (3), directional data on profile eleva-
tions; and (4), scattering results for Model II, both for those cases where a
definite keel structure exists, and for comparison with Models Ia,b as generated
here.
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0.



TD 7375

TABLE OF CONTENTS

List of Illustrations ....... ....................... ..vii

List of Principal Symbols ...... ..................... viii

1. Introduction...... ................. 1

2. Underice Surface Elevation Models: I and II .... .......... 5

2.1 Model I: An Unstructured Two-Component Underice Profile 5

2.2 Model IIa: A Two-Component (Two-Dimensional)
Underice Profile, with Keels .... ............... ... 10

2.3 Model lib: A Two-Process Underice Profile,
with Separate Keels and Bottom Components .......... ... 13

2.4 A Model for the Marginal Ice Zone (MIZ) (Model lib) . 14

3. Scattering Cross Sections for Model Ia ..... ............ 14

3.1 Scattering Cross Sections: Model la ... ........... ... 17

3.2 The Reflection, Tilt-, and Shadowing Factors,
R-2 N(0 )  S2 . . . . . . . . . . 201?o' Ln c ~ ,S . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 2
0' LH-inc'
A. The (Plane-Wave) Reflection Coefficient, R 0 20

B. The "Tilt-Factors" (0) , 21
-_H-inc' LH-coh .........

C. Shadowing Factor, S. ...... ................. .. 23

3.3 Model Ia: A Numerical Example--Backscatter at

8oT = 800, fo = 1 kHz .... ....... . ... .......... 25

A.. Calculations (e = 80; = 1 kHz; <4> = 00-500) . 26

B. The Backscatter Cross Section, 6(O 26
back ...........

C. Remarks and Conclusions ...... ............... 27

4. Scattering Cross Sections for Model Ib ..... ............ 30

4.1 Scattering Cross Sections; Backscatter Cases, Model Ib 30

4.2 The Tilt-Factor N(0). 32Lh-inc-back . . . . . . . .3
4.3 Model of the Small-Scale, Additive Surface Component, Cn 34

4.4 Model lb. A Numerical Example: Backscatter @
eoT = 800,0oT 7r/2; fo = 1 kHz ... ............. .. 36

5. Concluding Remarks .... ... ...................... . 38

pv



TD 7375

Appendix A.1: Wave Number Spectra and Spatial Correlation
Functions: Models Ia, Ib ... ............. .... 41

A.1-1 One-Dimensional Correlation Functions
and Spectra (Model Ia) .. .......... ... 41

A.1-2 (Isotropic) Two-Dimensional Cases
(Model Ia) ..... ................ .... 42

A.1-3 RMS Slopes (Model Ia) .. ........... .... 43

A.1-4 Covariance Functions and Wave-Number
Spectra (Model Ib) .... .. ............ 45

Appendix A.2: Scattering Cross Sections: Definitions,
Nomenclature, and Conditions ............. . 50

A.2-1 Incoherent Scattering Cross Sections, 6.). 50

A.2-2 Coherent Scattering Cross Sections, 8(o) " 53

A.2-3 The Reference Area, AREF ......... 54

A.2-4 General Geometry in Detail: The Received
Scattered Wave .................. 54

A.2-5 Parameters of Eq. (3.6): 60) R > 1 58• "inc' C
Appendix A.3: Second-Order Probability Densities of the

Mixed or Gauss-Composite K,S Process, Eq. (2.1). 61

References ....... ... ... ... ... .... .... 67

I

vi

• T . -:"T i- "- -' " - " "- _' : , - -' ', • . ,. L . " -" >'. - i .. -, .'i, L .- . - .-> ." -



TD 7375

LIST OF ILLUSTRATIONS

Figure Page

1.1 Historgram of underice profile , from Lyon's data .... 3

2.1 Roughness wave number (intensity) spectrum of underice
profile , after Mellen et al., from FFT of Lyon's data 8

2.2a Model II: Two-dimensional underice profiles (C)
Eq. (2.13), with distinct keels (K) .. ........... ... 11

2.2b Model I: Cross section of a (two-dimensional) underice
profile ( ), without distinct keels, governed by Eqs.
(2.1)-(2.7) . . . . . . . . . . . . . . . . . . . . . . . .

3.1 Parameters of the Ice-Bottom Scattering Models

(Models Ia, Ib) .... .. ..................... ... 24

4.1 Backscatter Cross Sections at 8oT = 800; fo = 1 kHz . . 28

4.2 Sketch of Kh(Ar), Eqs. (4.12), (4.12a) .... .......... 37

A.2.1 (a) Backscatter Geometry (far-field): Monostatic
scattering (R@T), vide Fig. A.2.2; (b) Bistatic
Scattering (ROT): "forward" or oblique scattering
geometry, vide Fig. A.2.2 ..... ................ ... 51

A.2.2 Geometry of the transmitter (@ 0 ), underice surface (s),
receiver (at 0R)' showing surfacl elevation Z above

= 0: S and the common region of illumination on So
due to overlapping beam patterns (T' R .. ...... . . . 55

vii

- -. -' ''', ,-= i." - '-- .' . i - . -. . • . .. . - .- . .. ..' . . . ' " " " --- - , . . . . -. '



TO 7375

LIST OF PRINCIPAL SYMBOLS

A : beam parameter kc = spectrum wave number parameter

A : beam area in illuminated k0 , k, k = wave numbers
surface

L = scattering Lo = "bump" lengthOX' %y' Oz; -01 angles

= correlation distancec

B = beam parameter Zh = "bump" length

bo = Co 8 T + cA, AK = regions on a plane
0X = source wavelength

CI  spectrum parameter xD = spectrum splitting wavelength

cI, cW : speed of sound in ice,
water ms, mK = mean values

5 5 :unit functions on a N(O) (O) N(O) "tilt-factors"k LH ' LH ' Lh tfinite region i nie g ns = unit normals to a

S (2-dimensional) delta function surface (K,L,S)

5= delta function

<o2> = rms ice slope angle

F1. F2 = characteristic functions pdf = probability density function

f (carrier) frequency of sound oT = horizontal angle
source

fD = spectrum splitting frqquency = (plane-) wave reflection

coefficient

yo = density of "bumps" (ice pro- R, RH, R = rayleigh number
jections) per unit surface r, Ar, Ar = distances
area

P, Ph' PV PS' PK = normalized
I(0 ), (2 ) I(4 ) = tilt integrals covariances

'O '2 I 4  Pc = radius of curvature

J_, .1x , 'y,1 z , ' 2.R = unit
vectors

5 = shadowing function

Jo = Bessel function of first kind 6(0) = scattering cross section
CL(x=y) = rms slopes

K, Kh = surface covariances P K aS' K h' aH = rms elevations

K 1, K2 = modified Bessel functions 6 = amplitude spectral density

of second kind

viii



TD 7375
e vertical angle C h' K' S' L' H = profile
oT Celevations,

components
WH1 Wh9 W1, W2 = wave number C , C rofile slopes

intensity spectra x y CLx' CLy = P

w= first-order pdf o= "bump" elevation

ix



TD 7375

INTERMEDIATE AND HIGH-FREQUENCY ACOUSTIC BACKSCATTERING
CROSS SECTIONS FOR WATER-ICE INTERFACES:

I. TWO-COMPONENT PROFILE MODELS*

by

Dav4 d Middleton**

I. Introduction

The purpose of this study is twofold: (1), to develop several

plausible statistical-physical models of typical underice "profiles"t

of elevations, C, which can then be used (2), to obtain acoustic scat-

tering intensities and spectra. Here we shall describe two general

models of underice elevations, and use the simpler one for an initial

determination of backscatter cross sections. The extension of these

results to the more complex second model is reserved to a subsequent

study, for which the present investigation is prototypical. In addition

here, we shall limit our analysis to zero-gradient oceans and single

ice-bottom interactions. The emphasis here is on acoustic backscatter-

ing, but the methods described are directly extendable to bi-static

geometries.

We base both our models on the (one-dimensional) underice profile

data of Lyon [1], '2], [24]. Figure 1.1 shows these data fitted by

two (first-order) gaussian probability densities for c. No attempt

has been made in this initial fitting to apply any specific "best-fit"

techniques: simple trial adjustments of means and variances, only, were

used to obtain a visually reasonable fit, which can be improved upon

but without major changes in the resulting parameter values.

Our first model (I, and specifically Ia here) postulates two

*Work supported under contract with the Naval Underwater Systems

Center, New London, Conn., N00140-83-M-PL78, 1983, and in part, under

Contract N00140-84-M-MS42, 1984.

**Contractor: Physics and Applied Mathematics, 127 E. 91 St.,

New York, NY 10128.

tWe shall use the term "profile" here interchangeably with "surface

elevation," which is a function of surface coordinates (x',y'), cf.

Fig. (2.2a)ff., e.g., C :((r).
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independent surface processes combining in some fashion to produce a

single surface, . These two processes consist, respectively, of a

comparatively small-scale [mS = 4.5 m; GS = 0(I m)] elevation, S' in

turn, which is accompanied by a larger-scale surface component, CK'

[mK = 12.5 m; aK = 3.0 m]. As noted, these coexist in some unspeci-

fied fashion geometrically, but in such a way that the distributions

(and probability densities) of s and K add*, in the manner of Figure

1.1, to give the distributions (etc.) of the total profile , cf. Sec.

2.1 ff. This first model (I) does not specify keel structure as such

explicitly. On the other hand, our second model (II) does, by identi-

fying the second (or larger-scale) gaussian elevation K with keel struc-

ture, on which may "ride" the smaller-scale gaussian elevation component

S (Model lIb). Unlike Model I, the total elevation, or profile process

, is an (appropriately weighted) sum of the independent processes S

and K' cf. Sec. 2.2 ff. Both these models are described analytically

in Section 2 following. Because there is some doubt as to the unambig-

uous geometrical existence of keels [3], Model I (which is the more

phenomenological of the two) may prove a useful candidate model. Decision

between them will depend both on additional data and on how well the

corresponding theoretical results agree with experiment.

In any case, we emphasize that both models are potentially capable

of handling all frequencies (above 0(30-50 Hz)) of incident acoustic

radiation,as noted in Sec. 3 ff.: neither is restricted to the small

Rayleigh number cases of Bragg scatter alone [5], and each can employ

appropriate shadowing and reflection functions [4]. Apart from the fit

to the empirical data [cf. Fig. 1.1], gaussian distributions (and hence

gaussian processes ultimately) appear more reasonable than other choices.

In a fundamental way we would say that the process of surface formation

consists of the superposition of many independent effects, so that the

usual Central Limit Theorem arguments [6] apply. Moreover, the presence

*Note that this is not the same thing as the distribution (and pdf)

of the process sumC= a1CS + a2 K, cf. Sec. 2 ff. See Appendix A.3 ff.,

also.

2
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0.30

0.25

0.20 /

0.15 /

0.10 W1): Gauss

/\composite gauss

0.05./

/ / ,w2) Gauss

T5 10 15 20 :depth(m)
m1=4.5m m2=12.5m

Figure 1.1: Histogram of underice profile C, from Lyon's data [1];
Ref. 4 of [2]. (Solid) curves: two component gaussian
fit; dotted line: composite gauss, C = bl s+b2rK, cf.
(2.7) et seq..

of widely separated nonzero mean profiles (elevations), e.g., ms =

4.5 m vs mK = 12.5 m, Fig. 1.1 (measured from the mean ocean surface),

with appropriately small variances (OS,OK), cf. Fig. 1.1, ensures the

practical vanishing of the pdf's wlS, WlK, etc., in question at c = 0,

as required (from the definition of the profile, cf. Fig. 2.1).*

*This latter requirement, viz. )O, has suggested that Rayleigh

processes for S K may provide appropriate models, but direct attempts

to construct Model I using such processes, as well as linear combinations

of S and K (Model II), also indicate rather poor fits to the data, as
2 =2 +2does the process, :s + K , [7 (not shown on Fig. 1.1).

3
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While the tangent plane approach of [4], as used here, for example,
is applicable for f = 0( 50 Hz), it is not suited to situations where

0

k 0 Zc is not large, cf. (3.1)-(3.3). We must then use the Method of

Small Perturbations (MSP) for lower frequencies 0(< 30 Hz) where the

Rayleigh parameter is small; see Secs. 9.1-9.6 of [11], esp. Sec. 9.6

vs. Sec. 3 of [5]; for MSP generally, see [12], Chapter 3. At these

low frequencies, the coherent-scattered energy, in the specular direc-

tion, dominates the incoherent scattered energy. This is the reverse

of the "high-frequency" or large Rayleigh number cases, where now the

surface has a large (vertical) roughness scale, so that coherence is

destroyed, even in the specular direction, and only the incoherent scat-

ter is observable, cf. (2.15)-[4] vs. (2.13)-[4]. In our present study,

as noted earlier, we shall consider only the intermediate and "high"

frequency situations, when k0Z >(>) 1 is obeyed.

3.1 Scattering Cross Sections: Model Ia

Model Ia, cf. Fig. 2.2b and Sec. 2.1, consists of a single surface,

_ z r A z( L + H)' (3.5)

which we arbitrarily divide into low- and high-wave number portions,

analogous to the treatment of ocean wave surfaces (Sec. 2.1, p. 6, and

Eq. 2.1 of [4]). The reason for this, of course, is that the low-wave

number part provides the "facet" or "optical" scatter componlts while

the high-wave number portion is associated with the Bragg scatter terms--

all under the condition here, (3.3), for the Kirchoff or tangent plane

method [f 0 0(50 Hz)], cf. [13].

The scattering cross sections for the incoherent component
incof reradiation are defined and discussed in Appendix A.2.1 (see also

Sec. 2.2 of [4]). For Model Ia, (3.5), we have here the first two

terms of (2.13)-[4] for the "high-frequency" regimes, i.e., large

Rayleigh numbers, e.g., f 0 0 (1 kHz), cf. Table 3.1:

17
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Our general conclusion from the above is that for the ice profile of

the Lyon data types [1], [5], cf. (2.9), we may consider the tangent

plane or Kirchoff method of scattering analysis to be applicable (with

appropriate corrections 0(1-3 db), as usual, for small grazing angles,

cf. remarks pp. 3, 37, 44), for frequencies above 0(50 Hz), and possibly

above 30 Hz. [For convenience, we shall designate the "intermediate

frequency range" as 0(0.10 kHz - 1 kHz) here, with the "high-frequency

region" defined as 0() 1 kHz).]

The Rayleigh numbers, R , for these surfaces and frequencies, are

typically (for o 5.68 (2.38)2 (m2), f. (2.6)) a'id small grazing

angles, here 6 oT : 800 (for which cos eoT 0.174):

RC c2b2k2 = (ko a2 cos OT2' (backscatter), cf. Eq. (A.2-12), (3.4a)00 0 oT0.) ,(akcte)

: (0.828 k0 )
2  , oT = 800 ' (3.4b)

which for a range of intermediate frequencies, 0(30 Hz - I kHz), is

shown in Table 3.1 below. Frequencies 0(30-50 Hz) are borderline for

the applicability of the Kirchoff method, at any oT (< 90°). We note

that for small grazing angles (eoT) 8 00), fo = (30-100+ Hz) are "low-

frequency" from the viewpoint of the Kirchoff approach, i.e., have small

Rayleigh numbers, while f = 0(>1 kHz) are "high-frequency," with large0

Rayleigh numbers. At larger grazing angles (8oT<80') freqencies

0(>50 Hz) are all "high-frequency" in this sense.

Table 3.1 Rayleigh Numbers for Backscattering; 800

f (Hz): (sec- 1 ) X (M) ko = 2r/X 0 (m1 ) R -back' Eq. (3.4b)

30 50 0.126 1.09" 10- 2

50 30 0.209 3.00" 10-2

100 15 0.419 1.20. 10- 1

200 7.5 0.838 4.82. 101

400 3.75 1.68 I 1.93

1 kHz 1.5 4.19 12.0

2 kHz 0.75 8.38 48.1

16
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(i). The Kirchoff approach requires that k0Pc > ( 1. 1; or

27rpcX 0 >(>) 1, i.e., the local radius of surface curvature

must be large compared to the incident wavelength, X0 '

This is equivalent to the condition

k 0 c >(>) 1 ; 2c = (horizontal) correlation distance. (3.1)

(ii). For the (isotropic) bottom ice profile, (2.10b) gives the

normalized directional correlation function p (Ar). From

tables of Kj(x), p. 737, [10], it is easily found that

xK-(x) e at x_1 = 1.65 = kcArl, so that, for

Ar_ 1 =Z c we have

1.65(k /k c) >(>) 1, or (x /X )(1.65) >(>) 1 (3.2)

as a defining condition that the Kirchoff method is valid.

Since, empirically, kc = 0.05, we require

2(l.65) >>) or 2.07 102 >(>) A (3.3)

0.05 o o"

(iii). For fo = 30 Hz,:. X0 = 50 m, and.. 2.07 102 >(>) 50,

which is not a very strong inequality. However, for f =

50 Hz, X0 = 30 m and 2.07 102 >(>) 30, which is better.

At fo = 100 Hz, X0 = 15 m, and the inequality is -14:1,

which is sufficient. Moreover, defining 2c according to
the e 1-scale, cf. (3.2), is quite strict: after P (Zc =

e -1 = 0.368 there is still noticeable (radial) correlation

left. We may therefore, choose a distance such that

P(Z0.01 ) = 0.01, i.e., essentially negligible surface cor-

relation, for which kc Z.01 A 6.5 (on using [10]), so that
(3.3) is modified to 21(6.5)/0.05 = 8.16 .10 2 >() X0 which

in turn permits a lower frequency, say 20 Hz (or xo = 75 m),

for 8.16 .102/75 . 11 >(>) 1.

15
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where again (2.14a,b) apply. Now, however, nK does not enter explicitly,

cf. (2.15). The gaussian processes S' K' described statistically by

(2.16a,b), still apply, as do the conditions (2.17). The statistics of

6K noted in (2.18) must once more be evaluated, in any case.

2.4 A Model for the Marginal Ice Zone (MIZ) (Model lib)

Model lib above is also a reasonable candidate to describe the com-

bined presence of ice and open water which is typical of the Marginal

Ice Zone (MIZ). Now we replace the keels (in AK above (2.19)) by the

(plate) ice, e.g., K+CIr K AI, and CS ocean surface,S'

r E A-AI , AI , e.g.,

C(r,t) = z -i (r,t), r c A,;

(2.20)

: -i zCs(!t s t A-A I  AI  9

where C (r) if there is no relative motion of the ice vis-a-vis

the platform in question (cf. (2.8) et seq.). Now CS(r,t) represents

the (moving) ocean wave surface, as before, which is subject to wave

generation by the wind, in the usual way [vide Sec. 1, Sec. 2.1, of

[4]].

The further development of the analysis for Models Ila,b, including

the desired scattering cross sections, is reserved to a subsequent re-

t " ere with Model I only.

3. ScatteringCross Sections for Model Ia

Here we make direct use of the results and derivations of the au-

thor's recent study [4]. We shall accordingly refer to specific rela-

tions therein by equation number, with -[ ] suffixed, e.g., (2.13) of

[4] becomes (2.13)-[4], etc.

Since our analysis is based on the Kirchoff or tangent plane ap-

proach, the results are mainly applicable in the intermediate through

"high frequency" ranges, which may be numerically established here from

the following argument:

14
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posed processes, then W1 (k) is a sum of two separate processes, so that

pS and PK may overlap (in wave-number) space. This partition is then

made on the basis of the relative contributions to the total process,

i.e., on an intensity basis, as indicated empirically by the parameters

as$ CK in (2.2) and (2.16a,b):

(2). K' CS are independent, by the argument of Sec. I above;

(3). 5K is independent of cSs K (and.. (6x,y)K: the location of

the keel is independent of keel elevation, as well as of the

smaller-scale surface component, CS" (2.17)

(4). 6K can be: (i), quasi-periodically distributed [in the

(x',y')-plane]; or

(ii), entirely randomly distributed in this plane,

so that overlapping keels are possible.

In the analysis leading to scattering cross-sections (and spectra where

appropriate, i.e., moving platforms), we shall need the following sta-

tistics for 6

<Y ; <'K16K2> = <6Kr.1,t1)K(2,t2)> : mi(Ar,t), (2.18)

again with the usual assumptions of homogeneity and isotropy, cf. (2.7)

et seq. From 2.14b) it follows that miiimax 1 = M 6(O,0), at least,

A K >0 . These averages will be obtained explicitly by a direct extension

of the author's results, Secs. 4.3, 4.5 of [6], to two dimensions (in a

.. .. -sbsequent study,.sf. Sec._4_ff.
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where AK is the region occupied by the keels, cf. Fig. (2.2a). [The

positive z-direction is upward from the reference (x,y)- and parallel

(x',y')-planes, with r = I x + I ix' + iy ', etc.] In terms of
, x - -x -,

the subsequently required integrals over the domains of acoustic "illu-

mination" of the underice surface we have

r e AK A f 6K(r,t)( )dA ; r e (A-AK) - A [1 - 6K(,,t)]( )dA, (2.14a)

with

K K1, r e AK  0, r e AK.  (2.14b)

Here n K is the unit normal to the ice-keel surface component, given by

I(I x, +  y2 2+ C2K
_K = IQ .x +2'ty - z x 1 +y K;

(2.15)
= -i whenr e A etc.

-z K x = x'

The following assumptions and conditions are next imposed:

(1). K' CS' and. CKx' CKy' are gauss processes, now with the c.f.'s

-im s - as&2/2 F-iims -i 2mS- (a/2)[ l+ 
2+2 1&2PS]jSF1(i )s : e SS ; F2 (i 1ii 2 )S : e S 2 2

(2.16a)

2 2 2 2+2+

F1(i&)K Vm- 2 I [=+_+ 2C1 2PK]

(2.16b"

where mS , US , mK9 aK are given (in the case of Lyon's data) by (2.3),

and we have taken account of the fact that the underice elevations are

negative in our reference system, cf. Fig. (2.2a). Here PS and oK are

normalized directional covariances of these elevations. From the iso-

tropic assumptions of the empirical fit to the Lyon's profile given by

Mellen et al. [5], pS and PK are to be obtained by some suitable parti-

tion of Wl(k), (2.9), or W2(k,4), (2.11b). If we follow the underlying

assumption of Model Ila above here that the S- and K-surfaces are super-

12
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(gaussian) underice profiles, C, of Model I, where keel structure, as

such, is implicitly subsumed in the profile statistics, cf. Fig. 1.1.

Two variants of Model I will be examined: Model la, which is a single-

surface model, is the simplest choice, and one which we shall find needs

to be extended, to account for observed scattering cross sections. This

extension is Model Ib, which now includes an additional small-scale rough-

ness component, riding on the single-surface.

Before we continue on to the results for scattering cross sections

in Sec. 3 ff. for Model I, let us concisely describe Model II, which is

a viable alternative to Model I, at least in those interactions where a

keel structure can be identified. As in the case of Model I, two vari-

ants of Model II appear plausible: Model Ha, which is characterized

by a comparatively small-scale (small m, a) elevation process which

rides upon the (quasi-) random keel structure (large m); and Model Ilb,

where the "small-scale" profile and the keel profiles occur separately

in space. This latter form also appears reasonable for modeling the

Marginal Ice Zone (MIZ) cases.

2.2 Model hla: A Two-Component (Two-Dimensional)
Underice Profile, with Keels

For this model we postulate that there is a distinct keel structure,

with profile component K' upon which "rides" the smaller-scale bottom

irregularities, whose profile component is S' in the manner of Fig.

2.2a. This is to be contrasted with our unstructured two-component model

(Sec. 2.1), where no explicit keel structure is distinguished but is re-

garded as part of a single profile, C, governed by (2.1) etc., as sketched

in Fig. 2.2b.

Accordingly, the underice profile for our Model II can be expressed

as*

-(r' t) : z EK(!' t) + _.K(I't)s( 't)' S E A K(

= - S(rt) r e (A'AK) AK

*The time-dependence is indicated explicitly, to include possible
platform motion, cf. (2.8) et seq.

10
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from Appendix I, where Kl(x) is a modificed Bessel function of the second

kind. The corresponding transform relation is

Wl(k) 2 f eik r p(&r)d(r) = Eq. (2.9), etc. (2.10c)

The associated two-dimensional wave number intensity spectrum for this

isotropic model is accordingly given by

W2 (k)= 2Y f0 PC(Ar)jo(kAr)rd(Ar) (2.11a)

=22 2 2 2 1b
47rC/(k +k2) 2 , 0 < < 27T k k (2.b)

c x y

* in which

de 2 W2(k, )kdk = f WI(k)dk c/k2 < 0, (2.11c)
f 0 2011

2cf. Eq, (4) of [5], and Appendix I. We note that while a2 can be ana-

tomized into the component contributions of S' CK' cf. (2.5), (2.6),

it is not possible to do this for the covariance or wave number spectrum

(2.8)-(2.11) in our present Model I.

For these empirical models (2.9), (2.11) clearly a2 is finite, as

it should be. However, we note that the corresponding wave number spec-

tra of the profile slopes, x9 y, or 3/9x, etc., are

W1/(k)a/x = k2W1(k); W2 (k,o) = k2W 2(k, ),  (2.12)

so that the mean-square slopes a2  are logarithmically divergent. Of
Cx,y

course, physically this is not acceptable, and we must therefore require

a faster fall-off of the model WI, 2, with wave number, at the high fre-

quencies. As yet there do not appear available data which allow us to

extend the results of Fig. (2.1) beyond X0 < 6 m. Consequently, we are

unable at this time to determine a~x,y; (see, however, Sec. 3 ff.).

On the whole, nevertheless, with (2.5), (2.6), (2.9), (2.10) in

(2.4) for F1(iQ) and (2.7) for F2  we are specifically equipped to use

the author's recently developed methods and results [4], (1984) formally

to obtain the desired scattering cross-sections for the composite

-~.
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The new quantity p is the normalized covariance of the (possibly)

relatively moving) underice surface elevation, defined by

P,.(Ar,T=iArl/vp) = 1)..l)12,2) - /y,tl) "

=i {(rl--,tj) (r1+Ar,tj+ T) -(r,t) 2}/2; (2.8)

Ar =r2-r; T = t2-t

where r = x +. vy is a vector in the (x,y)-reference planes, cf.

Fig. (2.2a) ff., and VP is the (uniform) speed of the reference plat-

form. Thus, if there is platform motion, the (random) ice profile

appears to be moving, like a random wave surface.* (With no relative

motion p (Ar,T)-p (Ar,0) = p (Ar), as expected.) Note, as required,

when lj,*o- , p. -0: there is no "dc"-component of c in p, and accordingly

F2 1P0,=F 1 (i 1 )F1(iE2 ), where F1 is not given anymore by 2.4); cf. (2.6)et seq.

Next, we use Mellen et al.'s [5] isotropic empirical fit to the
one-dimensional wave number (intensity) spectrum of the profile, Eq. (2),

- .[5], obtained by FFT analysis of the profile shown in Fig. 1.1 with

"dc" (or mean) component removed. This spectrum is (See Appendix I ff.):

W(k) TrC /(k
2 + k2 )3/2; C =a 2 k2 =0.013; kc :0.05 m 1

i c(2.9)

(or X = 126 m),

which is given in Figure 2.1. The standard deviation a, of I, found

from the analysis of these data is 3 = 2.3 m, cf. remarks after Eq.

(2) of [51, a result which is in excellent agreement with that of our

composite model above, (2.6), namely, a, = 2.38 = 2.4- (m). The asso-

ciated (normalized) covariance function for (2.9) is (vp = 0):

(& = 21 dkWl( -ikiAr/ a rl r = Ar, (2.10a)

I
f W

1 (k) cos k Ar dk/a = kcKl(kcAr)Ar, (2.1db)
0 ~c c r

*For random platform movement, in the general "bi-static" case of

separate moving source and receiverplatforms, see the author's 1977

paper, [9]. 7

"" - - . " " - ." .S " " - -'i '- ; - . -"" . .- . . . ... . . " " •. . .••-, •' "
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From well-known results ([6), Eqs. (1.30), (1.31)) we have the

associated characteristic function (c.f.)
00 .i~ ims -022- imKE-a 2 2/2

F1(i) C f W ()e d =be b 2e , (2.4)

with the following first and second moments

= blm + b m 5.1 (m); b + M + b2 + M 31.3 (m2
1S b2mK 12 b S mS b2(K +iK) 13m

(2.5)

• ".02 2 varC

=b 2 + 2 2 2 2 (2.6)
b1S b2aK 1 S 2  K 1 -i2KK

= b a b2+ba + bum5 + b 2
I S~ 2 K b '2(m-

= 5.68 (m ) (2.38)2 (m
2)

from (2.2). We note that if we assumed that the underice elevation

were a composite (gaussian) sum, e.g., c = blC s + b2CK, then is cor-
227rectly given in (2.5), but then C %comp' cf. (A.3-13). In fact, we

show in Appendix A.3 that (I), it is not possible to construct a second-

order gauss-composite process which reduces to (2.1) or (2.4).

- On the other hand, we need primarily the second-order pdf (or c.f.)

..... of the profile r, in order to determine the desired (incoherent) back-

scatter cross section. In view of (I), Appendix A.3, remarked on above, we

must restructure our gauss-composite model to include one which has a (still

gaussian) second-order pdf (and c.f.), again because of the Central Limit

theorem argument cited in Sec. 1. Accordingly, we choose the composite

gauss process C = b1cS + b2CK, and require it to have the same first-order

first and second moments as (2.1) above, cf. (2.5), (2.6), accepting the

rather poor first-order fit to the data, cf. Fig. 2.1. [For the coherent

scatter cross sections we would use the well-fitted results (2.1) and (2.4)

directly.] Consequently, the following second-order characteristic func-

tion, from Eq. (7.10) of [6], can be written

'l'"[ - 2 2+ 2 ]/[E i1 +iE2 -o[G 1+2E 1 2P]/

F2 (i 1'i 2IPC) = e ; (C = bI s+b2CK)'I (2.7)

where we have postulated homogeneity (and stationarity) for our present
* 6 - 2

model. Here Cand a. are given by (2.5), (2.6).

• " . .'o ." • ,. . • " .' , .' " - ° " , . .. o. o . , . . . o .-. . o" . " " . .° * . . ° " - - ° -" ; . . " - . . . . . l , . - _ , _ , . " - , ,. - , - .- . , , " , l ; ' " . l : ' l " = ' ' ' . " .', ' / ' ' ; '
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2. Underice Surface Elevation Models: I and II

Here we lay the statistical foundation for both our Models I and II,

referred to above in Sec. 1, although in this Report we shall use only

Model I in carrying out our determination of the desired scattering cross

sections. Accordingly, let us begin with Model I.

2.1 Model I: An Unstructured Two-Component Underice Profile

From our fit to the Lyon histogram illustrated in Figure .1.1 we

obtain the following first-order pdf* for the underice "profile" or sur-

face elevation

-(W 2m) e + e 2 , (2.1)

where we find that, specifically,

b aI1 a

i - i a*---a2 0"07 ;and bl+b 2 =I'0;bI  a+a 2  093; b 0.070; a = 0.22; +aa2a+a 2  0.016;

_~ OK
Sm S = 4.50 m mK  12.5 m (2)

a S  =l.00 ml aK  3.0 m -

It is clear that

f w1 (C)dC f w1 (C)dC = 1 (2.3)
0 -

here, in view of the large means (mS , mK) and comparatively small vari-

ances, so that the "tails" of both the fitted gaussian densities are

quite negligible for c<0. Thus, the underice "profile," or elevation

C, is described by the weighted sum of two gaussian distribution (den-

sities) (which is, of course, not the same as the composite gauss process

consisting of the weighted sums of the separate elevations Cs, K'

cf. Appendix A.3.) We call c here, cf. (2.1), a gauss-composite process.

*For the moment, in Model I, we regard as positive downward; since

z is positive upward, cf. Fig. (2.2a), in the platform-underice geometry

of Section 3 ff., we will accordingly change the signs of Q, etc. appropriately.

5

% -A-1, . .
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Because of the large Rayleigh numbers involved, theories based solely

on Bragg scatter are inadequate, except at very low frequencies and/or

large grazing angles. Consequently, we must develop the first- and

second-order characteristic functions of the profile elevation C. Then,
we must artificially decompose the single elevation process C (Model Ia)

into two further (independent) processes at some sufficiently short sur-

face wavelength, or corresponding wave number kD (=2r/XD), so as to ob-

tain the scattering contributions of the"rougH' (i.e., Kirchoff "facets")
and the"smooth"(or Bragg) surface components, just as is done in the

conventional treatment of wind-wave surfaces as distinct gravity plus

capillary wave surfaces [81. (A similar approach is used for the large-

scale surface component of Model Ib ff.)

The specific dichotomy depends, of course, on the wave number (in-

* tensity) spectrum of the underice surface (cf. Eq. 2.3 and Sec. 7.3C of

[4]), examples of which are modeled in [2), [5] (Sec. 2) from empirical

data. Thus, our theoretical approach in this work is a direct extension

and modification of our earlier results [4), which provide the substan-

* tive analytical foundation of the present effort. We shall for the most
.- part be content to present the needed final results, referring the reader

to [4] for the detailed background. What is new here vis-a-vis earlier
work [for example, [2], [5], and refs. therein] is (1), explicit statis-

tical-physical models of the underice profile, which permit an incoherent

as well as coherent scattering analysis at intermediate and high fre-

quencies; and (2), the specific results of that analysis, albeit limited

to Model I here. Model I itself is simplified basically to a single

gaussian process, , now with means and variances given by those of the
first-order gauss-composite fit to the Lyon data [cf. (2.1), (2.2) et seq.]

*-.. Finally, this Report is organized as follows: Section 2 gives an

analytic description of the aforementioned two profile models (I, II),

0 .with their pertinent statistics. Section 3 provides backscattering

cross sections of Model la, and Section 4 includes the extension of
, - Model Ia to Model Ib, to provide a possible mechanism whereby agreement

between theory and experimental data can be effected. (A full treatment

is reserved to a subsequent report.) Section 5 concludes our analysis

with a concise summary of the principal results and conditions under

which they apply. [Appendixes A.1-A.3 provide appropriate special

results and analyses.]

* 4
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2~ ~ 22 2

ao) 0R2 ox 0 oz

inc R>>1 1 ( / 2

oz 81Tb 0 o Lx aLy
(3.6)

+ o N(O) (2 )i  WH(2aoko)

167r2  LH inc

The terms in { } represent the results of the "physical-optics" cum
"perturbational" approach, i.e., here respectively the facet and Bragg

scatter terms, cf. Sec. 7.3 of [4]. The former is seen to be independent

of frequency, while the latter is a first-order Bragg component, since

< 1, or more precisely, RH<< 1, with small correlations.*

In (3.6), N( )  is a "tilt-factor," embodying the fact that the
LH-inc

0 high-wave number surface component, cH' is tilted, i.e., presents on

the average a larger grazing angle p(= Tr/2 - eoT) toward the plane of

. incident radiation. The quantity WH is the wave numner intensity spec-

trum of CH into which the (single) profile , (3.5), is dichotomized,

while x 2Ly are the variances of the (x,y)-slopes of the "low"-waveLx' YLy

number component, CL' of the underice surface in this model, cf. (3.5).

(The symbol I denotes (x,y)-plane or (x,y)-components only, and aox'

etc., are differences of the components of the incident and reflected

waves' unit vectors, T - R' for the basic one-reflection geometry of

this study, viz. Figs. A.2-1, A.2-2; bo  cos eoT + cos aoR For a de-

tailed description of the various elements of (3.6), and (3.7), (3.8)

following, see Appendix A.2, including the reflection and shadowing

* factors (R , 5 )in Sec. 3.2 below.0
For the coherent cases the scattering cross section is defined by

(A.2-5) and is found for all Rayleigh numbers, R,(> 0) such that the

Kirchoff condition (3.1)-(3.3) is obeyed, here for f ( 0(50 Hz)), to be

-.- *This assumes a "splitting" wave number kD large enough that

0 2  f 2 2
H k WH(k)dk/(2r) << 1 (m2), cf. Sec. 3.3C, Eq. 3.21) ff.

18
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R k b k° 3k xA + aY/B]IC() 0 (o)2 e-0 0 0 o.
coh 16 2 a z (3.7)

0, "high-frequern-es," R >>1,

here for f0 = 0 (> 1 kHz), cf. Table 3.1 above: very rough surfaces,

e.g., RC >>1, destroy coherence, as expected. [In addition, since the

beam parameters A,B <<1, cf. (6.32)-[4], the second exponential also

ensures the vanishing of 8coh' unless the Snell angle (aox = aoy = 0)

is chosen.] Note that this coherent-scatter cross section depends on

the area illuminated (via A,), as distinct from the incoherent cases,

(3.6), which are always area-independent, subject, of course, to the

conditions cited in (A.2-15). Our results (3.6), (3.7) hold for ar-

bitrary directions of illumination and observation.

Various particular cases of (3.6), (3.7) can be obtained directly

by appropriate specialization, e.g., "high"- and "low"-frequency back-

and forward-(specular) scatter, etc., from the author's results, pp.

18-24 of [4] (always subject to the Kirchoff condition (3.3)-(3.4)).

Since we shall show presently [Sec. 3.3] that Model Ia, (3.5), is ap-

parently incapable of acceptable agreement with empirically measured

cross sections, we shall limit our treatment to the special cases of

backscatter, for which (3.6) 'reduces, on setting IoT 1/2, cf. Fig.

A.2-1, OR = aoT , to

e tan 2 eT/2aL k4

Inc back [ oLaLy cOs 4 eoT+ 16Tr2  LH (oT)incWH(O2ko oTR->>I LxL

o T/ (3.8)
: (O) + 8(0) . (3.8a)

inc-L inc-H R >>I

Again, the first term of (3.8) is independent of frequency, in this

"high-frequency" (R >>I) approximation, which as noted above is the

"specular-point," facet, or geometrical acoustics solutional form of

the "full-wave" approach of Bahar and Barrick et al. [13], [14], [15],

(and also references [5], [22], [24], [31], [44] in [4]). The second

19
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term of (3.8) embodies the (first-order) Bragg scatter associated with

* the small-scale surface component CH' Whereas the specular-point con-

tribution, L9 is the dominant part of the cross section for moder-

' ate to small 0 oT, it vanishes rapidly for small grazing angles (eoT

large), so that in this surface model only the perturbational Bragg
term, d contributes. We shall use this observation in Section

* inc-H'
3.3 below to test the applicability of our Model Ia, (3.5).

3.2 The Reflection, Tilt-, and Shadowing Factors:

R2 N N(0 )  S2:
0' LH-inc'

With wind-wave surfaces, which are pressure release surfaces,

(Pco)water/(Pco)air ~ . As a result the (local plane-wave) reflection

coefficient R is Ro  -1, cf. (3.9a) ff. Moreover, since the rms wave
slopes are small 0(4 5* I0"2) the tilt-factor (N0 /16 = N4(0)) is like-

se inc inc
wise small O10-2 ), cf. (3.2d,e)-[4], and unless 6oT> 850, the shadowing

coefficient - is always close to unity. With ice surfaces, however,

these perturbational conditions do not fully hold: as we shall see from (3.9)

below, at these frequencies o150 Hz), Ro is +1, while quite large slopes

a (x=y)=O(:1.5) may occur. This, in turn, generates larger tilt-factors, as

we would expect, and at the same time produces more shadowing. Consequently,

we must reexamine our earlier evaluations of both the tilt-factors and

shadowing coefficients used in our wave surface analyses [4], to take

these modifications into account.

Accordingly, let us begin first with the reflection coefficient:

A. The (Plane-Wave) Reflection Coefficient, R

For our far-field application here the local plane-wave reflection

coefficient R is a reasonable approximation, even when averaged and0
removed from under the integral sign in the Total Surface Spreading

Function (TSSF), cf. (A.2.7a), as in (3.6)-(3.8). Specifically, we

have

Plclcos eoT- Pwcwcos eT
R°(eoT) Plc Cos eoT+ wCwcs oT (3.9)

where (pc), * 2 for ice and (pc)w = 1 for water, and 0oT angle of

20
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transmission in the ice. Since at these frequencies (perfect) internal-

reflection occurs for ice, 0oT = /2, and

2cos eOT-O (3.9a)

R0  
2cos 6oT+O

[For air-water interfaces (Pc)i air<< 1, and so Ro - -1, as usual.] Thus,

F 2 is our scattering cross section here, and is given by

0
ice

B. "Tilt-Factors" (0) N

NLH-inc' LH-coh

From (8.28a)-[4], and from (7.22)-[4], (7.24)-[4], respectively,

for the incoherent and coherent cases, we can write the "tilt factors"

for Model Ia here as

N(O) = (2atoz) 2 <2()xx + 2(1o - 2aoz)2 x = ; x  etc. (3.11)

For the symmetrically distributed slopes assumed here (about x = y 0),

(3.11) reduces directly to

()2 2 2 2 2 2L-N c {c 0 ) i+(2 2 + I2c ) }1; (2a+ oy Ly + oz
(3.12a)

a2  2
Lxy x,y

Choosing 7oT = /2, cf. Figs. A.2-1,2, we get, cf. (A.2-11),

NL() =(2a (2)o 2 (3.12b)

LH-inc 4oT=/ oz LXyi Ly + 2c.z)]

Similarly, from (7.22)-[4], etc. we have

0 /+2ax2y - 2ct )3 (6c2a 2+6c2a ̂2 2

LH-coh 8a y > 8yo
+ + >Loz\ 1+ ;2+ C

(3.13)

21
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taking advantage of the assumed symmetrical distribution of the slopes

(where <C3> > = 0, etc.).

Inasmuch as > = mean-square slope angles of the profile, we
x ,y

have at once by definition

ta : 2 or <2 > - tan-l'
Lxy xtan or x y = t Lxy" (3.14)

Unlike surface waves, where a (5.42 10-2) or <42 13.1',
,.... ~ ~~~~~Lx=y =(.2 r<2 1. °

cf. (3.2d)-[4], for.20 knot (mean) wind speeds, we may expect the slopes

of the bottom ice profile to be considerably larger. This is borne out

by (albeit limited) empirical data, which suggests that < =2> = 0(300),

or a2  = 3.33" 101, [16] Consequently, we cannot replace 1 + 2 + 2Lx ,y ' "x y

by unity in (3.13), but must evaluate the averages exactly. We continue

to assume isotropic bottom surfaces [cf. Sec. 2], e.g., a : a7

Accordingly, since is postulated to be gaussian, in accord with our

Model I, cf. Sec. 2 above, so also are x' Cy , which are likewise inde-

pendent of each other and of C. In fact, we can write explicitly
2 2a 2 2 1a2 2 +;2 12
Lx /2Lx - Ly /2 x L - 2 + L/2L(x=y)

W 1 LxCLy , LxLLy 2 2
22
2L(x=y) lisotropi c

(3.15)

xhy2 ?2 Using (3.15) in (3.13) allows us to write
] with Lx,y : Lx~y"

()LHcoh -8OZ {(6a 2  + 6oy 2)I (2 (a2)+c 2z} ' (3.16)

where (cf. pp. 107, 108, [4])
00" 2 (x x+y )2 y 2

-(2) (a2 ) = (x2 or y2 )e dxdy,. __: a2 yf -0 1 + x 2 + y2  27ra 2  2 0  1 + y

. .. a2 - 1/2a2,
2 2

-'2-{ - a + y 2 I + a e Ei(-a2)} (3.17)

00
.-.. . . 22
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since
CO -a 2z _a2 e2  aa-2 2 OD m a2m,

I +e dz e: E (-a2) with -eEi(-a 2  a- (- )m ,ia a2>>I,

0 Z=
(3.17a)

and -Ei(-x) = Ei(x) is tabulated in [17], [18]. Table 3.2 and Fig. 3-1

below show N L-and Hcoh for a range of rms profile slopes.

C. Shadowing Factor, S
2

* We shall limit ourselves here to the incoherent backscatter cases

(R@T) only, for this study. [A summary of pertinent results for T and

(R@T) is given in C, Sec. 7.4, [4], cf. p. 109.] Here 52 Q = 4))back =

Fig. 59 of [12], where b(= IT/2 - oT) is the grazing angle, as before.

The pertinent parameter here is

=(cot 0oTV/L(x=y )  ( of Fig. 59, [12)),

: (tan4) oL(x=y)

By calculating j - a) and using Fig. 59, [12] we at once obtain good

estimates of S2 (= Q). For the large rms underice profile slopes en-back
countered here we see that< a >can be noticeably reduced from unity

back
(no effective shadowing), vide Table 3.2 (and Fig. 3.1), again unlike

the ocean wave surface environments commonly encountered, where xy

is comparatively small, C, Sec. 7.4 of [4], where S(

back 1

Table 3.2 Backscatter, oT = 800; (boT =-T/21

rms slope -i , V
2age,40NO /16: 1() 16 _____ N___)__/16 a8 Q (db)a . L oL L db LH-nc LH-co6 db n 1c o ._ o_ "o-04 9.0 _ 10- o; o., - ,o, -4 '-o,

(-30.4) 9.09- 104 4.20. 10 (-30.4) 9.09" 10 - 1.00 0.0

o0 j3.. h 11.. 1_-2 -B,-- 1 0 0 9 6 . . 2-.

20 0.364 1.32 . 10 (-23.) 4.77. 10 0.826 (-13.7) 4.27. 102 4.84.10-  0.80 -1.0-2!
30 0.577 333. 101 (-19.7) 6-10 1.37 (-8.2) 1.50 " 10 i3.06 " 10 0.63 -2.0

40 0.839 :7.04. 101 (-16.7) 2.15. 10-2: 95 (-4.3) 3.72, 10
"1 

12.10. 10
"1  

0.49 -3.1
50 1.19 1 42 (-13.7) 4.24- 10-2 2.35 (-0.7) 8.52 10

"
1 il.48. 10

"!  
0.37 4.3

•...1---~,- , ,i 5, 2

,,..--"23
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For the backscatter condition taken here (oT = 30; =/2),

Eqs. (3.12b), (3.16) reduce, cf. (A.2-13), to

IN(O) bc

LH-inc : cos 4  o {2 2tan2 + I}
16 back oT L oT

0oT' /2 -4  2 (3.19a)
oT=80°; 9.09 10 {(32.16)3. 

LH-coh = 8cSe {61(2) (a2 )sin2 eTCos2 T

/ 16 back -csoT (a)i oT+co oT;

/oT=r/
2

= -1.39 {5.821(2)+3.02. 10-2}. (3.19b)

Figure 3.1 shows how aL a2, N(O) etc. vary with the rms slope angle.'L LH-inc'

Typical values of <pb2> are 0(30') for ice bottom profiles, [16]. As

expected, increasing < b2> leads to increasing tilt-factors and smaller

shadowing coefficients (S2), because on the average, the effective angle

of incidence is thus increased over 6oT as a result of the larger (bottom)

slopes. Also, for the same reason, the fraction of the scattering sur-

face cast in shadow is increased, i.e., S2 is decreased. However, com-

parison of S2 (db) and N( )  (db) from Table 3.2 shows that the tilt-LH-inc2

factor increases (with aL or 2) considerably more rapidly than the
shadowing factor decreases, so that the net effect is a significant (rela-

tive) gain in scattering strength due to the increasing rms slopes of the

bottom ice surface, as this may occur. Note, for the ocean wave example

discussed in Sec. 3.1 of [4], that the rms slope angle is 13.10 (corres-

ponding to a mean wind speed v = 20 knots), cf. Eq. 3.2e-[4], for which

aL = 0.233, from (3.14), with S2  -0.4 db, as shown on Fig. 3.1 here.
back

In this case the associated tilt-factors are comparatively small.

3.3 Model Ia: A Numerical Example--Incoherent Backscatter at
eoT 800 , fo = I kHz

With the results of Sec. 3.2 in hand, let us apply them to Eq. (3.8)

to obtain the (theoretical) backscatter cross section for a critical

geometry, which tests the adequacy of our physical model. Such a test

25
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occurs at "high frequencies" and small grazing angles, where the geo-

metrical acoustics (i.e., "facet") component of (3.8) is negligible vis-

i-vis the Bragg term, [4]. Accordingly, we choose OoT = 800 (q = 100)

with oT Tr/2, cf. Fig. A.2-1a, and signal frequency f. = 1 kHz. Thus

we have the following calculations:

A. Calculations (eoT 800; fo = 1 kHz; < = . - 500)oT L

(I.) ko  2/X o  27Tf 0 /c0 = 2 T 103/1.5 -103 = 4.188 (rad m- )

k4 = 3.08 2 (rad m) (3.20a)

(2.) OoT = 800 coseoT = 0.174; cos 4eoT = 9.09 10 -4; sinOoT : 0.985

tanBoT = 5.67 ; tan2eoT = 3.21 -10 ; sin 40oT : 0.941

2ko sineoT = 8.25 (3.20b)

(3.) From (3.10) and Table 3.2 we get R2 S2 for 0 0, 100, ... , 500

(3.20c)

(4.) WH(O,2ko sineoT), (2.11b):

WH  2  ,- kc  0.05 m- C 1 0.013
I kc +(k 0sineoT)T f

T 1 -4 0r(.013 -k4  (3.20d)
4k4sin 4 o T  ko 40941) k(1.09" 10-2).

B. The Backscatter Cross Section,6 (0)

back

Combining the numerical results of A above with those in Table 3.2

and applying these, in turn, to Eq. (3.8) for the backscatter cross sec-

tion, specifically at small grazing angles (0oT = 800), gives us the re-

sults shown in Table 3.3 following:

26
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Table 3.3 Model la--Backscatter Cross Section, e(0).

[oT 800; (o : /2); fo 1 kHz]

L2 . ( 0)+ 60) (

rms slope L(x=y) inc-L inc-H inc

0 0 0 (-a dB) 9.99 *10-7  (-60.0 dB)

10 3.11" 10-2  1.27 * 10-95  (-949 dB) 1.93 - 10' (-57.2 dB)1 . -10 51 -

20 1.32 10- 2.75" 101 (-506 dB) 4.19 • 10 (-53.8 dB)

30 3.33 •10 8.76 * 1020 (-191 dB) 7.37 • 10 (-51.4 dB)

40 7.04 1 10-1 3.81 ' 10-9  (-84.2 dB) 1.16 - 10-5  (-49.4 dB)

50 1.42 1.38 " 10-4  (-38.6 dB) 1.73 * 10-5 (-47.6 dB)

Eq. (3.14) Eq. (3.8) Eq. (3.8) (no Kirchoff correction)

As expected, the frequency-independent "facet" component, 6(0) of
' ) i n c -L ' o O .

(3.8), is quite negligible vis-a-vis the Bragg component, C0)
inc G inc-H'

until the rms slopes become large 2 450(e.g., -- 1), at 1 kHzL L
specifically. For example, at 2 = 1.42 (<22 = 500) the facet com-

L L
ponent actually dominates as shown in Fig. 4.1. Also, because of the

general form of the wave number spectrum (2.11b), the Bragg component

inc- is essentially independent of frequency, cf. (3.20d) in (3.8)inc-H2 
2

(provided the effective signal frequency f0 is such that (2k sinoT) >>kc
2 -4 .4o oT

= (0.05)2 , cf. (3.20d)). Then, WH - 4Tk0 C1/sin OoT. Here, at the smaller

grazing angles ( 3T>
700 ) this means fo 0 (> 100 Hz). The backscatter

cross section 'i0) for Model Ia is shown in Figure 4.1 ff. The curvesinc

x x x x include a +2.5 dB Kirchoff correction, taken for 6)oT = 800

from Fig. 13 of [19]. This is appropriate for rms (wave) slopes of

13.10 [- o2 = 5.42 10-2, for mean wind speeds of v = 20 knots (= 10 m/sec)],
but is probably too large for the larger ice slopes here, since the larger

"tilt-factors" reduce the penumbra effects of near-grazing incidence.

Thus, the corrected curve for 8(0) is a conservative upper limit.
inc-back

C. Remarks and Conclusions

Our results are not sensitive to the "splitting" frequency fD (or

wave number, kD = 2,r/XD), cf. [13). However, it is reasonable to choose

this frequency less than the signal frequency (f0 ), in any case such that
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dB inc Exp + 15dB

-20-

-2

Expt.:3(7 A±t15 dB

ah =15.0Ocm Gh=lO.

-3 h=5.Oc Yh5

Y4.0cI Ex 15/ without correction

-65 Zh3Omk80 ()

0 100 200 300 400 500 600

< ''= tan-

Figure 4.1 Backscatter Cross Sections at eoT= 800; fo I kHz-. Model b
xxxxe Eq. (4.5), Model Ia: ~--,-,Eq. (3.8):8(0h jib)

(All have Kirchoff correction of +2.5 dB, except ,Eq. (3.8).)
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the Rayleigh number, RH (: Hob2k2) for the resulting "high-frequency"

Bragg component is small compared to unity, so that the associated per-

turbational expansion of the Kirchoff model (in the manner of [4]) is

valid for obtaining this Bragg contribution. [See the remarks at the

beginning of Sec. 3.1.]

The wave number spectrum used for splitting here is given by (2.11b).
2We calculate H, the mean intensity of the Bragg component, from

322 2 4irCI kdk

H = fkD WH(k)dk/(2n) = f dob 2722 (2CI2
HI k H0 (k 2+k 2') 2k(2c r)2

D c

= U 1 + (k/k)2 1 ; G2 = C /k2 = 5.68 m2 ; k = 0.05 rad m'1

D i 1cc
(3.21)

Table 3.4 shows RH = (aHboko) 2 for various "splitting" wave numbers, kD,

at a Signal frequency of I kHz and 100 grazing angle, in the backscatter

regime, for the Lyon data of Sec. 2.

Table 3.4 Model Ia: Rll@ f,= 1 kHz, e 80°(0-oT = /2)

0 (Hz) X0 (n k0  rad m 1  G2 2)2 R 2= -2I _D (m) kD :=rad H 3.21 H2 H; (kobo)22.116m

30 50 0.126 0.772 RH = 1.63

50 30 0.209 0.307 0.650

100 15 0.419 7.97 10-2  0.619

200 7.5 0.838 2.02 .•102 4.27 .10-2

400 3.75 1.68 5.03 •10 1.06

1 kHz 1.5 4.19 8.07 .10-4  1.71• 1 3

2 kHz I 0.75 8.38 2.02 4.271

For the above geometry (and data) choosing fD >) 0(100 Hz) yields a satis-

factorily small Rayleigh number (f0 D<f -) for the Bragg component. In

the present situation, i.e. (3.8) for 6 , both the "facet" and Bragg

components are independent of kD (> k0 ).
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Conclusion: It is quite apparent from Fig 4.1 and Table 3.1 that

the simple, single-surlice model (Model Ia), however arti-

ficially split to gie "facet" and Bragg-scatter contribu-

tions, yields too small (incoherent) backscatter cross

sections, 80) a these comparatively small grazing angles• inc'

[and intermediate and "high" frc4uencies, f0 >0(100 Hz)].

Even allowing for the large experimental spreads (A = 0(15 db))

in the data (Fig. 4 of [5], and Milne [20], Mellen and Marsh

[21]), shown as the dotted line in Fig. 4.1 here for cT = 800,

f 0 =1 kHz, Model Ia is inadequate to account for the ob-

servations.

Accordingly, we must investigate the more complex,

two-component surface Model Ib, described in Sec. 2.2 above,

to see whether it can reasonably account for the larger ob-

scured backscatter intensities.

Finally, we note that major numerical differences with the analogous ocean

wave surface models stem not from the analytical results, cf. (3.8), but

from the much larger rms slopes encountered in the ice profiles, as well

as from the empirical details of the profile data themselves (cf. Secs.

1, 2).

4. Scatterin Cross Sections for Model Ib

As we have seen in Section 3, a single-component, or single-surface

model appears to be inadequate to explain tne observed (back)scatter

cross sections, cf. Fig. 4.1. This strongly suggests that an additional,

but independent, small-scale surface structure, riding on the original,

larger-scale underice surface may provide the required scattering mech-

anism, which accounts for the empirical scatter cross sections, particu-

larly at the smaller grazing angles (6oT> 7 0 0).

4.1 Scattering Cross Sections; Backscatter Cases, Model Ib

Thus, we modify Model Ia, (3.5), according to

: A AA Ch iz( L + H + AACh (: Model la + hA h) (4.1)
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where the additional, small-scale-surface component is h = h(L)' which

is now regarded as normally distributed, <h > = 0, vide Sec. 4.3 ff.

The unit normal n , cf. (2.15), reduces to

= myy~ - iz) 1 + C2 + L /x, (4.2),a .L = Z/x YL

the contribution of the "high-wave number" comnnnant, H bein. ignor-
able vis-a-vis that of eL' in C" [!,, fact, we eHognize (4.1), with

A -i nLl as being formally analogous to our previous ocean wave surface

model (2.1)-[4], which includes a solitoti or haudraulic jump component

riding on the underlying gravity-capillary wind-wave surface. Here,

however, h may be "two-sided," i.e., < h> = 0, unlike the soliton model

used in the wind-wave surface study [4], cf. (4.11), (4.12) ff.]

Our analysis here consists of a slightly modified version of the

treatment described in [4]. The incoherent scattering cross section

may be compactly given by

(O) =; (O) + 3(0) + 3(0) (4.3)
inc inc-L inc-H inc-h (

where the first two terms of (4.3) are respectively provided by (3.6)

above, in the general bistatic cases, specifically under the Kirchoff

conditions described at the beginning of Section 3, which for these

classes of profile data are applicable for illuminating frequencies

f O( 50 Hz), viz., the "intermediate" and high frequencies. Spe-

cifically, 3(0) is given by' inc-h
4(0) 2 2 k 0  (

o 0)
inc-h 0 16T 2 Lh (2 )in Wh(2ox) , (4.4)

cf. (2.13)-[4], where Wh is the wave number intensity spectrum of the

additional, independent surface component, 'h .

For backscatter we use (3.8) for the first two terms of (4.3) and

write (4.4), OT = T/2, as

31
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To obtain an estimate of the wave number, kS, at which a new spectrum is

required, we solve (A.1-13) or (A.1-13a) for kS , getting (A.1-14), KSc>>l.

The results are tabulated in Table A.1-1:

Table A.1-1 Spectrum Transition Wave Number

ks , C : 0.01 3 ; kc = 0.05 (m- I)

It1 : rms slope G2(:)=tan2 <$ ks (m
- 1) 1( 2T/ks) (M)

00 0 0

10 3.11 "10 0.47 - 13.3
-13320 1.32 "10 2.18 "10 2.88 •10 -

30 3.33 .10"1 1.10 •i0 I0  5.71 1010

40 7.04 .10-1

50 1.42

Clearly, the transition wave number k is much too large for the rms

slopes encountered in practice with ice profiles, e.g., 0(300). so that

kS = 0(10 
0 ) or XS = 0( .10 m). This supports the argument, developed

in the text (esp. Secs. 3, 4) that a true two-component or two-scaled pro-

file surface should be considered, since a single-scaled profile, however

artificially split, yields much too small backscatter cross sections (for,

in the text, grazing r6gimes). As we note above, such a profile requires

much too short a cut-off wavelength, aS, to provide the magnitude of rms

slopes typically encountered, vide Table A.1-1 above.

A.1-4 Covariance Functions and Wave-Number Spectra (Model Ib)

For our surface elevation model (4.10), when each projection element

is independent, so that a poisson model of element location may be ap-

plied, [20]-[22], we readily find that the covariance of the profile is

given by

Kh(,_r) f P o(r') <c(rl-r dr', (A.1-15)
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since
o0

f f (-ik )S (k) 2 e-ik-r
x -0 - (2Tr)2

where S is the amplitude wave-number spectrum of c(r). Thus, we write

2 ________-ik -r +ik *r dk) L(x=y) : f kk SkS2e2 X 2(21 Yr:

(A.1-!O)

and since

S C(kI)Sc(t2)*= (2r)26(k2-k)2(l with Ar = -r

which defines the wave number spectrum intensity W2, we use k
2  k 2+k2

= 2k2x=y and (A.1-11) directly to obtain the result (A.1-9). Equivalently,

for these isotropic cases

2 2xy) + (2Ty k (k f kLdk_ ' k). "
_CO (21T)2 2 0 .

(A.I1-

Now, using (A.1-7) in (A.1-9) and truncating the spectrum W2 at some

(large) spectrum transition wavenumber kS , to get a finite rms slope, we

have here

G2  f k S k3dk C 2, + 1 kS
L(X=y) 1 (k2k 2 2 2 S1gK~1 1+K2  1 KSc= k

0 ck) Scc
(A.1-13)

C1
T (2 log KSc 1), KSc 1, (A.1-13a)

with

k kc exp { [ + 2 2(xy)/Cl]} (A.1-14)
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from Watson [10], p. 410, (2), with

2 22( 2C1/(k +k2)2 , cf. (4) of [5]. (A.1-7a)
2 (-K)Mel 1 en

Similarly, using (A.1-7) in (A.1-5a) gives the correct covariance,

viz.:

2 1 4 TC1  ikAr cos
(2n)2 _, (k c+k 222d xdy

- 21T do kdkeikAr cos4 4Tr C 1

(2I) 0 0 (k2+k )2

0 J0 (kAr)kdk /C
:2C f k 2 2 = ) k ArK (k Ar), (A.1-8)

0 (k+k 2) k 2  c 1

as required, cf. Watson [10], p. 434, (2).

A.1-3 RMS Slopes (Model Ia)

The calculation of rms slopes aL(x=y) of the ice profile can

readily be carried out once the spectrum (or the correlation function)

is known. From (A.1-4), or (A.1-8), it is at once evident that with

this spectrum model aL(xy) becomes infinite, so that for suitably small

wave numbers the empirical spectrum clearly is inadequate, i.e., does

not fall off fast enough as k --. Thus, we may use the empirical spec-

trum (A.1-7) up to some effective cut-off frequency ks, at which point

another spectral law takes over. Just what the new spectrum (at k> ks)

is remains to be determined by experiment [cf. our remarks a propos of

Model Ib, Sec. 4].

For the (isotropic) slopes we have, in general,

2 2 _ 1 k,(A.0-9)
L(xy) : rO 2W7 f 0W2(A
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lim

and since XKl(x) 1, we have at once (cf. Watson, [10], p. 185):

/k = C J/k = 0.013/(0.05)2 = 5.20 (m 2);-.c =2.28[=2 38- , (2.6)]

p r =cr (A.1-4)
.F.l o(Ar) = k cAr~lk c:4r)

which is Eq. (2.10b).

A.1-2 (Isotropic) Two-Dimensional Cases (Model Ia)

For the associated spectra and correlation function in the two-

dimensional cases we have, generally,

(2-dimensions): K (r) = 2p (gr) = f f W2 (k)e'ik-Ar (2 2  (A.1-5a)
C C-CO (21T) 2

with

W2 f f K,(r)eik*Ir d(Ar). (A.1-5b)

Similar to (A.1-2) there is the relation

2TW2 (k)Mellen,[5] = W2(k). (a.l-6)

Let us use (A.1-3) and the postulated isotropic character of the

wave number spectrum to determine the two-dimensional form of W2 (k) here,

viz. (2.11b). From (A.1-5b) we have

W2(_k) f df 0 Ar d(Ar)2 (k Ar)K (kcAr)eiA* cospO
0 0 c

= 2Tra 2 I Aro(kAr)Kl(kcAr)(kcAr)d(Ar)

= (2na2/k) f Jo(kx)Kl(x)x 2dx, b - k/kc

W2(4) C 22) O<4 2; k /k2 +k 2 , Eq. (2.11b), (A.1-7)

c
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Appendix A.1. Wave Number etra and Spatial
Correlation Functions. Models Ia, Ib

A.1-1 One-Dimensional Correlation Functions
and Spectra (Model Ia)

For the wave number spectrum and associated spatial correlation

function we employ the following Fourier transform relations:

(1-dimension): K(ll) - 2  (IAnr) : I Wl(k)e-ikr dk Ar : A
1~ 2-' _

i (A.l-la)

with

Wl(k) f _K (r)eikr d(Ar), (A.1-lb)

where

c K(O) f _ W (k) - (A.1-1c)
001 2iT

for the mean intensity of the profile elevation, C. In reference [5]

the wave number intensity spectrum is defined as

2= WW 1k(k) (A.1-2)2Wk)Mellen,[5] = Wl1)(AI2

here.

It is instructive to obtain K (Ar) from the empirical fit of Mellen

et al. [5], (2.9) viz.

Wl(k) = 2C/(k + k2 3 /2  (A.1-3)

Thus, using (A.1-3) in (A.1-la) gives*

2PAr C1 dk -ik~r = cos kAr d - (k Ar)K(
(k(r) : k2)k2 )3/2 e 0 (k 2 +k2)3/2k k2 c 1 c

c c c
(A.1-3a)

*In equation (2) of [5] "constant" should be replaced by "(1/2)

constant." This also insures that (4) of [5] agrees with (2.11b), etc.
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(i). To include specific keel structures in the manner of Models

IIa,b (Sec. 2.2);

(ii). To compare the results of (i) with those of the present

study;

(iii). To evaluate forward, as well as backscatter, including co-

herent scatter components.

Critically needed now are active experimental data, both linear and di-

rectional, at wavelengths 0(6 m - 1 cm) on underice profiles for typical

regions in the ocean. With such data we can evaluate and compare the

various scattering models, and select the one appropriate to the profile

regime in question.
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present results depend primarily on the chosen parameter values of the

model in question, and only secondarily on the specific analytic structure.

The conditions under which our quantitative models above have been

constructed and evaluated are, concisely:

Model Conditions

(1). Far-field operations, for both source and receiver vis-a-vis

the underice bottom (Appendix A.2);

(2). Kirchoff-Bragg scatter conditions (Sec. 3), requiring "inter-

mediate" 0(0.10-1.0 kHz), and "high" frequencies 0(, 1.0 kHz),

which are in the large Rayleigh number regimes;

(3). Composite gaussian surface profile model (Secs. 2, 2.1), based

on Lyon's data [I] (but see Sec. 2.1 for limitations);

(4). An isotropic covariance (and associated wave-number spectra)

for the large-scale profile component, based on Mellen et

al.'s recent work [5];

(5). Finite (rms) slopes--Sec. 3.3C; gaussian pdf of slopes;

(6). "Single-bounce" geometry for ice, source, and receiver; and

Vc = 0;

(7). "Hard" ice boundary, with local plane wave reflection coef-

ficient (Ro=1), cf. Sec. 3.2, A.

(8). Large "tilt-factors" and non-negligible shadowing corrections,

Sec. 3.2, 4.2.

(For details, see the text above and Appendixes A.1, A.2). Unlike the
related problems of scattering from the ocean wave surface [4], [12],
the surface slopes involved here are much larger, 0(2.5-3), with conse-

quent modification of the analytical and numerical results, cf. Secs.

3.2 B, C; 4.2, Table 3.2 above.

Our Models Ia, Ib do not explicitly designate a keel structure,

for the reasons we have already noted in Section 1. Neither are we con-

cerned here with "low"-frequency scatter [fo = 0( 30-50 Hz)], and

multiple surface interactions, produced by suitable geometries in a non-

zero gradient ocean (Vc 0). These, and other model situdtions,are

reserved to subsequent studies. Of these, our immediate next steps are
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is not critical; rather, it is the values of height (-Oh) and scale

(~Zh) which are significant (except, of course, at the very high wave

numbers, which influence the (rms) slopes).

5. Concluding Remarks

The principal general results of this study are:

I. Determination of the incoherent (backscattering) cross sec-

tion, 8 0 ) for Model Ia: a single (isotropic) underice sur-inc'

face (Sec. 2, Sec. 3);

--- II. Extension of Model Ia to Model Ib, which adds an additional

surface component, of much smaller scale.

The general result II is generated from the observation that

III. Model Ia is shown to be inadequate to account for the empi-

rically observed backscatter cross sections (Fig. 4.1),

particularly in the critical regimes of small grazing angles

(eOT> 700 ) and "high" frequencies f )0(0 .5 kHz). Further-

more, Model Ia, if applied for all wave numbers, yields in-

finite (rms) slopes (Sec. 3.3 C).

IV. Model Ib can account for the observed (back)scatter data,

cf. Fig. 4.1. The scale of the added independent surface

component, rh, appears to be: rms elevation h 0(8-15 cm);

e -correlation distance Zc = 0(4-7 cm). (Model Ib always

has finite rms slopes.)

V. These models and results strongly support the need for pro-

file data at wavelengths 0(6m - 1 cm), from which appropriate

wave number spectra can be constructed for model use.

-. Accordingly, a two-, independent-component model of the (underice) pro-

file, involving small- and large-scale surface elements, can account

for the observed (back)scatter cross sections, particularly in the

limiting r~gimes of "high" frequencies and small grazing angles. Whether

G such a model (Model lb here) is appropriate, i.e., adequately repre-

sents the underice scattering mechanisms involved, remains to be de-

termined, both theoretically and empirically [the latter from V above,

and remarks below: "next steps"]. One limitation here is the restriction

of A' (4.1), to a single gauss process, albeit with the correct (i.e.,

empirical) second moments, as described in Sec. 2.1 above. Models II

[Secs. 2.2-2.4] are not so constrained. It is emphasized, also, that the
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-e-10

distance," Kh = e-lh

Remarks
*Figure 4.1 shows the incoherent backscatter cross section )

nc-h'

attributable to the small-scale component riding on the large-scale

profile, lS' for a selection of parameter values (Oh, .h). We have

chosen values which give cross sections in the range of empirical values
when the rms slope is 0(30 ° ) . Typical values are 0 h : 0(10 cm) and

Zh = 0(4-5 cm), or £c = (5+ - 7 cm), for our present model. Here

~ (0)

nc-bac -ao O  for slopes 0(20° - 450): the independent, "small-

inc-acance,-h e Fh

scale" component riding on the large-scale profile is here clearly the
dominant contributor to the incoherent backscatter cross section, for

"-.- these (comparatively) small grazing angles and high frequencies,

.[.- o(f o : 1 kHz). The rms roughness of h' as measured by ah, is 0(2-5%)
ttibof that of the (composite) large-scale profile, A [Of course, at this

Sstage we do not have experimental verifications of the scale of these

numbers, except indirectly through the postulate of Model ib and the
] comparisons shown in Fig. 4.1.)

" Finally, if we use the generalized version, (A.1-22), of the wave-

*I number spectrum noted above (4.14), we obtain for the same paramters(and = 7 c h) essentially the same values of 0  more recisely

values only 0(2.5-3.0 db) lower than those shown in Fig. 4.1. This is

in keeping with our remark above (beginning of Sec. 4.3) that the "shape"

3 of the individual projections forming the small-scale surface component

" ' 'i-37
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4.4 Model Ib. A Numerical Example:

Backscatter @ aoT=80 , o=7r/2; fo=l kHz

__ Combining -or Lh cf. Table 3.2, (4.14) for Wh(O,2kosinOoT);

S(3.10) and S , Table 3.2, in (4.5) gives us the desired quantitative

structure for the backscatter cross section ich)inc-h' arising from the
added surface mechanisms, Ch" Table 4.1 shows a range of values of am

inc-h'
for various choices of model parameters

Table 4.1 Model Ib--Backscatter Cross Section

-0inc-h' Eq. (4.5): (Uncorrected*)
[eoT = 800; fo = 1 kHz; ( oT = T/2)]

* :' '/2)]

1: th . oc i h" 4.0 cm: h "50c '

4 I>30 m Lh4. m Ih '50C:MS 30cm 6.0 9.0 h - 4.0 cm i  8.0 12.0 
0

h - 5.0 cm 10.0 15.0
0 i -68.6 (db) -62.6 -59.1 -63.7 -57.7 -54.2 -60.0 -54.0 -50.5

10 1-58.4 -52.4 -48.9 -53.5 -47.5 -44.01 -49.8 -43. -40.31
------------------------.----------------- --- Z. ------

20 -52.8 -4&9 -4L. -47.9 -41.-39.4 -44.2 * -3L2 7
I 30 -48.4 -42r.4:- 389 43-S -W.5? -34. -*it -338 303

40-06 _W S -51 -40.7 )LTI S3L2 -37.S j -V2.S
40 -07 S. --A 3S -36. -I1

*We add a nominal +2.5 db to each entry, to provide the needed correction for the Kirchotf approximation
at * 80 (o-10°), from Fig. 13 of [19] cf. Fig. 4.1.

The shaded regions of the Table indicate cross-sectional values that

fall within the A-region (±15 db) of uncertainty in the empirical data

shown in Fig. 4.1. Also in Fig. 4.1 are four curves, representative

of possible model values (Model Ib). (The A-region is -17 to -47 db.)

Figure 4.2 shows Kh(Ar) and typical parameter relations: in our
present model L0, and therefore Z h' 9c are fixed; (for a model in which

L0 (= 2th ) is random, see Appendix A.1-4). Here Zc (: /-h ) is the

correlation distance of the profile component ( h)'
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cf. Appendix A.1-4, with

2_Kh(0) : y - L~or/8; h to/2; Ar2 : (AX)2 + (AW )  (4.12a)

where the mean value is explicitly

-2
<C? o '2 Le4 •(4.12b)

(Note that if o = 0: the mean "bump" height is zero, then there is no

"dc"-component in the wave number spectrum, cf. (4.15) ff.) Equation

(4.12) is shown in Fig. 4.2. (However, for an alternative model, extend-
ing (4.12), see Cases I,II in Appendix A.1-4, and closing remarks in this

Section.)

The two-dimensional wave number spectrum corresponding to (4.12) is

obtained from

Wh(k) :f f Kh(Ar)e ik -Ar d(Ar), (4.13)

cf. (A.1-5b). We have, for k = (0,2kosineoT) specifically here

Wh k  :"a 2 2 2(k 0 Zhsin6oT)
2

h() (4.14)

for the "continuum" part of the spectrum. If 0-> 0, then the complete

wave number spectrum is

2=2 4 22 -2(kohsineoT)
2

Wh(l) = Y -o TLo,(k-O) + 2 rah Zhe (4.15)

00 ikAx
where 6(k-0) = 6(k -0)6(k -0) and f Ae x d(Ax) = 27rA6(k -0), etc.x y x

(Note, incidentally, that h has finite rms slopes, unlike S above;

(Appendix A.1). The "dc"-component in (4.15) does not, of course, in-

fluence the scattered radiation.
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given by the results of Table 3.2 and Fig. 3.1, cf. Sec. 3.2, C. The
dominant effect, however, here is that produced by the "tilt," embodied

in N(0) cf. (4.9)
Lh-inc' c.(.)

4.3 Model of the Small-Scale, Additive Surface Component, Ch

A variety of plausible models for the small-scale component h is

certainly available at this stage of our study. One such model, which

we employ here, is that involving random "bumps" or projections, dis-

tributed in space independently, riding on the large-scale surface, CSI

cf. (4.1). These projections are accordingly poisson distributed, and

may overlap, or ride upon each other occasionally. Physically, these

"bumps" represent inhomogeneities in the local crystal formations on

the large-scale surface, produced by near-surface freezing forces.

A reasonable model of a typical (jth) projection is given by the

* gaussian form

.I4-rj I 2 L
Chj %h(r,rj) : Coe , (4.10)

where r is a (random) location (referred to the reference plane, So ,

cf. Figs. A.2-1, A.2-2). [What is primarily important in such models

is the height (-C ) and spread (-Lo); the actual spatial shape only

becomes critical out on the "tails" (I-rjl>> Lo), or equivalently, for
the high wave-number fall off of the associated spectrum.] Accordingly,

for the isotropic poisson process h (4.10), we may write (cf. Appendix

A.1-4) for the mean and covariance, respectively, generally

<h > = Y<1h(l)> ; Kh(Ar) Y(4.11)

_ . where Y is the process density (in space) = average number of "bumps"

per unit area (on A) cf. [20], [21).

* For our specific isotropic model (4.10), (4.11) reduces to

2 2 2
Y TL 2 2Ar /L -Ar /2(4,..Kh(A~r) 8o Lg oe

Kh- e y he  ,(4.12)
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N(O) '16 (4) siin2O oS 2 o + l(Oc( s oT 4 9 }
Lh-inc oT + 61 )soT

back T:"/2

(4.7)

where

- 2 1 2 + 2 2 xy ) (.a0 I -(x +y y2 - 2 +  2
(0dxdy = a 2 2 2I'~~ (a) = f f2 2 2 ae Ei(-a );a 1/aE=)_00 + x + y 2 1T(x 2 ' 4" •)

x (4.8b)

2 2 2

S(2) (a) E fo f (x' or y4)e (x2+y2/2 2x xdy 3f1._(21217a,

-0I + x 2 + y 2  2Ta2 a-2

~- -1'"1 + (a ,

a

(4.8c)

' :2-I and Ei(x) is the (tabulated) exponential integral, £17], [18]. (Note
""that with vanishing slopes, a- I(0) 1~i and I(2), I(4)0.) The re-

sult (4.7) is, in the general bistatic cases (with (oT = 1/2):
'"~~~ ~~ ~~ 16 2I 14 +()a +  2l2)a 4 (O)(a) (.9

(4.8)

a cf. (7.33e)-[4]1 and (A.2-11) (A2-13 14) for e

Values of NiO /16 for the backscatter cases are tabulated in Table

2;'- Lh-in
* 3.2 and shown in Fig. 3.1. This tilt-factor is seen to be much larger
* than N(0 ) n/16, for the artificially "factored" surface =A +

~LH-inc
cf. Sec. 3.1 et seq., as the profile slopes increase.

hlue oth for which scale c) remain unchanged in basic struc-
The other factors w i h s a e c( ) r m i n h n e n b s c s r c

inc
ture: R: 0 db, cf. (3.10), and the shadowing factor, S, is still

0
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.ko

(N(O) T6 Wh(O, 2kosin (45)inc-h back 0 16n 2  Lh 'o '(nback, o oT)"
R >> 1c

As before, cf. (2.14a)-[4] N( ) is the "tilt-factor" for ch associated

'' Lh h9a s c a e

with the larger-scale surface component cL' and is given generally by

N(O) =6 /( x x + %yy' - oz) 4\ (4.6a)
Lh-inc + 2 + 2 9

x y L

so that for backscatter (with cT = rr/2),

N()22sin-0 + 6si cos e

Lh- inc 1oT \ 2 2 ) OTc aT + 2 /*
back x y L x y L

+ Cos4 e (4.6b)
. " x y L

(for symmetrically distributed slopes, about <xy> = 0), where (3.15)
x9y L

governs the distribution of CLx' Ly here. As for the Bragg component

_) [ ,0 in (4.3)], the pertinent surface statistics for the new com-inc -H

ponent, inc h (4.5), are the wave-number intensity spectrum: there is

no requirement that h in (4.1) be normal, for example.

Finally, the complete expression for a0) is provided by (3.6)inc

and (4.4), generally, and (3.8) and (4.5) for the backscatter cases

treated quantitatively here.

* 4.2 The Tilt-Factor N(i)

Lh-i nc-back

Again [cf. B, Sec. 3.2], because of the large rms slopes involved,

we must use the exact relations (7.64)-[4], (7.65) -[4] to evaluate

.-. (4.6b), with the help of (3.15), (3.17). For the assumed isotropic

* surfaces here (aLx a aLy) (4.6b) becomes
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where .. = (Co, ... ), i.e., all statistical parameters of C, and is the
0

domain (i.e., surface) over which the individual projections can occur

(in our model, individual "bumps" or projections can overlap). On the

assumption of a uniform density of "bumps," (4.10), on A, we can rewrite

(A.1-15) as

Kh(Ar) y yo f < (X,')t(X+Are)> dX (A.1-16a)

2+A 2_ 2L 02 2
,-4(X+ 2)/L2-4(A +2A Xx+X +2XY£6Y+Ax +Ay )/L>

2y f fdX dX x\ y 0 x x Y y0

(A.1-16b)

for these isotropic cases. Evaluating (A.1-16b) is straightforward. We

.O get here

A2 T -2Ar 2 /L> L2Tn -2Ar /L
Kh(Ar) = YoCo e L : --- ) e , (A.1-17)

where in our present model we now assume that wl(Lo) = 6(Lo-Lo), so that

(4.12) is the result.

S-. However, it is instructive to consider some other pdf's of Lo:

Case I: wl(Lo) : Rayleigh pdf

1 0

Here Lo , or th, is assumed to be governed by a Rayleigh pdf, viz.:
-L- 2 ,/ 2 a 2 _ Z 2 --2

"tLO £ he- hl £

0W( L o )  L , L ) O ; o r w h  -

1 20owZh -- 2 (A.1-18)
.,L. 2Zh h

• Using
, 7y v/2p

0- S-Bx-P-Yx-P 2(yv2

f x'-le dx P 6) K __ (2 /By), Re(B,y> 0) (A.1-19)
0

[23], p. 342, No. 3.478-(4), we see that (A.1-17) becomes, with (A.1-18),

46

* .



-.b, -. ,~- - - - --

TD 7375

2 £3e h/2 0Z-Ar /2th  2

Kh(,Ar) = 0 h dkh /az

02

Kh(r) ( 2o70) A21 ) K 2(Ar/a.) (A.1-20)

and since 1im 'x2K 2(x) = 1, we "ave directly

2-0 2 ;-
o 12 h 2 G (a 2z z ~-) A12

Kh(0) =  o°£- ' 2 h h

The associated (two-dimensional) wave-number spectrum from (A.1-5)

is nowS

_ 1202 3A1-1W h f x3K2 (x)J (kax)dx, Ar/a2  x, (A.1-21)W2(1) 2 h° 2 0)o z

0

W() ah2U24/[ 1+(ka£z) 2 4a 2k 4/(k 2+k 2)3
(A.1-22)

( W2 (k)) ;k - 1/a ,

by [10], p. 410, Eq. (2). Unlike the empirical model (A.1-7), this

spectrum supports a finite rms slope. From (A.1-12) we see that speci-

fically

h 3, kk2
. a2  = 4f k3W2(k)dk 4 z 2  k3dk 2 k 2 2

h 7 T2 2 3 ah 4T- h z~4ta
h(xy) : 0 : 0 (k2+k2) - h .1-/4 )z (A.1-23)

* this last from [23], p. 293, 3.241-(4) directly.

Incidentally, it is not possible to get the covariance (A.1-3,4)

from our gaussian model (4.10), as this would require a pdf of Zh of the

form

4
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2 2

w1(Zh) Z h 2 >0, (A.1-24)
a

which is singular, i.e., not bounded or normalizeable.

Case II: w1 (Lo) = "one-half" Gauss pdf

In this case Lo  or th is now assumed to obey a "half-gauss" pdf,

viz.:

1L2/2a 2  222
=~~~ 2A 02 1

W (Lo 1---e -  or w1 (kh) : - e (L0  22b)

(A.1-25)

Using (A.1-19) with (A.1-25) in (A.1-17) gives now

_.2 £22 2 2 2
Kh( r ) : (Y2o 2)Tr f c/h / 2  -r /2 h dhld (A.1-26a)h r h hiI

: C2 - / 2 (Ar/a) 3 / 2 K (Ar/oa) (A.1-26b)

Since ([10], p. 80)
-" 1

K3 / 2 (x) =/ e- x [I +-J, (A.1-27)

we note that

lim / x2 3/2 K W 1. (A.1-28)

Consequently, we may rewrite (A.1-26b) as

K (yo K (A.1-29a)

-". 02kh 2(r) :c (Ar -Ar/cy
h h(Ar) ah Z + 1) e (A.1-29b)

where the mean intensity is here

Kh(O) Ch oo 2- 2 (A.1-30)
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as before, cf. (A.1-20a), and the expression, {},in (A.1-29a) is the

normalized covariance, k h(Ar).

The associated (two-dimensional) wave number spectrum follows from
(A.1-29) in (A.1-5a). Taking advantage of the surface isotropy implied

by Ar - Arl A r here, using (A.tl-29a) we obtain*

= 7 d o ArA.0V A3/2 ikAr csW2 .)=f d fU (r)rh -(.') K31  (Ar/a2,)e C5 (A.1-31a)
0 0 2

=27ra ha~ Z~ J 0(ka k y)K K3 2(y)y 'dy (A. 1-31b)
0

W2()- 6 rh2  / W (k), (k.  1 /a ) (A.1-31c)
2 1+(koz2 J 5/22.

6Tra k /(k +k (A1-1dh Z (AZ-3d

again from (2), p. 410 of [10]. This spectrum, unlike that of the empirical

model (A.1-7), also supports finite rms slopes, e.g., from (A.1-12),

Ch(x y)J gauss TT~ f 0 3W2( 2dk2 0(....2 )/2 (=2/3)

C72/02 (< 00) (A.1-32)

*like Case I above. Here W2is 0(k- 5 as k -,.o while W 2.Rayleigh i

0k6),and W 2empirical is O(k_4 ). As yet, the various pdf's for Z h
* - (Cases 1,11) are plausible, but not physically justified in any profound

way. One task of a subsequent study will be to attempt a rational choice
*of w 1(zh), to be tested ultimately against experiment. Basically, it is

the behavior as k -~which appears to be the controlling factor in such

models.

* *We can, of course, use (A.1-29b) directly, to obtain (A.1-31c,d).
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ARpendix A.2. Scatterin Cross Sections
DefinitT-ns, Nomenclature, and Conditions.

There is a number of variations on the concept and definitions of

scattering cross section. It is therefore important to define the

term explicitly, so that the different definitions can be calibrated

with one another [which we shall need to do in order to effect compari-

sons with both the analytic results of others and the corresponding

measurements (cf. [4], Secs. 2.A,b and Sec. 3 ff.for ocean wave-surface

scattering)].

We begin with:

A.2-1 Incoherent Scattering Cross Sections,
i nc

Here we define

- I I k=O ) sateigarcivr).2

-(0) _ich(cteiga eevrR RR[pt loss) x(gTgR)2
-. .. inc lIncdn(at surfaceiAE

(A.2-1)

where Iincoh' lincident are, respectively, the intensities of the scat-

tered and incident fields at the points indicated. The basic concept

of the scattering cross section (for surfaces) is to eliminate the

effects of source level and propagation, i.e., the effects of the

medium--which are handled separately--when computing energy loss, and

to focus on the effects of the random scattering surface itself.

To keep (0) dimensionless, a reference "illumination" area, APEF.
inc

is employed, whose specific form is suggested by the composite beam

0 pattern projection on the reference or equilibrium surface < > 0 0: So .

Figure A.2.1 shows the relevant geometry.
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.t)

-/ 0 (r,t; 0S , oR

z ool

', /o,

(a) (b) "R

* Figure A.2.1 (a) Backscatter Geometry (far-field): Monostatic scat-
. tering (R@T), vide Fig. A,2.2; (b) Bistatic Scattering

(R) T): "forward" or oblique scattering geometry, vide
Fig. A.2.2.

ilT

The various factors in Eq. (A.2-1) are given by

(A.2-2a) Tincoh (sca. atrcevr)(0) : intensity of the (in-

coherent) scattered field at the

receiver (R) [cf. Sec. 7.2 et seq.;

Sec. 8 ff. of [4]];

*0 (A.2-2b) lincident (at surface) K0 K(0)in/(47rRoT) 2 = intensity of the in-

, 1iicident field at S on the equilibrium
scattering surface

* (A.2-2c) gTg = the aperture "gain" of the trans-

mitting and receiving systems, cf.
(6.3), (6.7) of [4];
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(A.2-2d) AREF a reference area on the equi-

librium surface So, cf. Fig. A.2.1,

projected by the composite T and R

beam patterns. (See A.2-3 ff.);

_2awcoT°
(A.2-2e) "path loss" = e ; c0T0.= RoT + RoR; cf. Sec. 5.3, Eq.(5.18)-

(absorption) [4]; w (=27rfo ) is the (angular)

frequency of the emitted signal; a is

an absorption coefficient; co = (mean)
wave front speed of sound in the
water medium;

(A.2-2f) RoR = distance of the receiver (origin) from 0S

Fig. A.2.1;

(A.2-2g) RoT = distance of the transmitter (origin) from 0s ,
Fig. A.2.1;

" (A.2-2h) ;(r,t) : (vector) wave surface elevation, cf.
>- (3.5).

The definition (A.2-1) for the incoherent scattering cross section,
and those similar to it ([33-[5], [8], [9), [23]-[25], [29] in Ref. [4]
here, for example) are formally independent of range (RoT, RoR). This is

not an inherent property of the definition, however. It is a direct con-
sequence of the far-field assumption, whereby the effective coherent
scattering area is sufficiently small vis-1-vis source and receiver dis-
tances (ROT, RoR) and dimensions, cf. Sec. 5.5 and Eq. (5.31)-[4]. It
also depends on the correlation distances (x,yZ ) of the (components of

xythe) random wave surface. Thus, 6 0 ) is implicitly a function of geom-' inc
etry, where care must be taken in its use to ensure that the conditions

5
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governing the derivation of I(k=O) (=M(0 ) (0)), (2.7a)-[4], are obeyed.*incoh - X-<XC>

A complete definition of the incoherent scattering cross section

includes the effects of diffraction

i(0) + ( k) (A.2-3)incoh incoh +ncoh '"
k= 1

where the k  k 1, are formally given by (A.2-1), with inco)

- - replaced by the scattering intensities I = (0) cf Secs.
incoh ) "

7.2C, 8.5 of [4].

Preliminary estimates here of the magnitude of the leading diffrac-
tion coponent (>>co e (k'2)"

tion component, coh >incoh}, indicate that it is ordinarily con-

siderably smaller than the components of the "classical" term, 0incoh'
so that in this study we shall, at least initially, neglect the diffrac-

tion contributions.

a(0)
A.2-2 Coherent Scattering Cross Sections, 8coh

The coherent scattering cross section, ;(0) is formally the samecoh'

as incoh,(A.2-1), except that now the incident intensity (A.2-2b)

- . becomes

lincident~at the receiver)coh Ko(O)in/{ 4n(RoT + RoR) (A.2-4)

which is the "mirror reflection" term. Thus, Iincid-coh

(1/4)1 incidincoh' cf. (A.2-2b). In addition, I(k=O is replaced bythe cheret coponet Mi)no

the coherent component M<X>(O) cf. Sec. 7.2B, Eq. (8.7),[4]. Since only

the "classical" or (k=O) component of the scattered fieldcontains a

*The factors 47 in (A.2.2a,b), and in (2.9), (2.10b( ff., etc.,

arise because of our definition of the green's function, (5.8)-[4], and

source function (5.3a)-[4] in the equations of propagation (here a Helmholtz
* medium). Thus, our acoustic field is aM= /4r, where a is derived from

a green's function source of the form -476(j-a')6(t-t'). However,

" . because of the particular form of the definition of ;(0) used here and

generally, the scaling of the field is immaterial, as is required in

any useful definition.
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potentially coherent contribution (excluding any direct field which may

be received under certain mutual geometries), the complete coherent

scatter cross section is now specifically

l )(scattering at R) R2

coh incid(at the receiver R) AREF p (ggR)

or

(0) oR{41T(RoR 01
coh 20 (A-2.5b)

(gTgR)2 AREF Ko(O)in • (path loss)

A.2-3 The Reference Area, AREF

The reference area, AREF, appearing in the above definitions of the

scattering cross sections, (A.2-1); (A.2-5), while arbitrary, is dependent

on the beam pattern projections on S0 . From Section 6.5 IV, (6.56) of [4],

our choice of reference area is specifically

A REF =A 1/2, A1 = 2r/ (ToT, (A.2-6)

where A1 is the projected area (on SO), here specifically of the com-

bined gaussian-omni-directional beam patterns used in this study and in

[4]; A(e oT) are parameters of the projected beam pattern on So, cf.

6.3; also Secs. 6.4, 6.5 of [4] for details.

A.2-4 General Geometry in Detail:
The Received Scattered Wave

For the detailed development of the analysis it is now necessary

to describe the general geometry of the underice surface in relation to

the source and receiver in our current "one-bounce" model. This geometry

of the general (far-field) source-surface-receiver configuration is

shown in Fig. A.2-2, in more detail (cf. Fig. A.2-1).
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-aw 2 coTo ^

F(O) e 0 s R-FL'(i°T-i0°R)
()2oT oR 0O o°' z L R

(A.2-7a)

-( S/C0  22 [c o.+ •2+CT"0

e dxdy,

cf. (7.7)-[4], subject to the conditions of Sec. 5.5, [4], summarized

here in A.2-15 following.

The various elements of (A.2-7) are described below. These are:

A = effective "illuminated" surface area, by joint beam pro-

jection in So , cf. Sec. 6.3, Fig. 6.1, f4]. (A.2-8)

dSo  dr = dx'dy' = dxdy on So: = 0; with dE = dSo/n z; (A.2-8a)

where ' is always on the underice surface ; (A.2-8b)

r ix+ Jy; [(x',y')-system is simply a translation of the

(x,y)-system] (A.2-8c)

To = (RoT + RoR)/co: time-delay from OT - 0S - OR: (A.2-8d)

2oT,_ oR -RoT,oR/LEoT' !RR: unit vectors; (A.2-8e)

T' iR -T,R/IET,RI: unit vectors, to projection of scattering

point on Z upon So; (A.2-8f)

RT. RR, ROT,.. : -RTI, IRRI, etc., distances; (A.2-8g)

t, = t - AtdS = doppler-shifted epoch; (r',t') are on the under-

ice surface Z; (A.2-8h)

AtdS -T r' (r,t) = iT" {r + (r,t-RR/co)} : RR RoR - _ oR r;(A.2-8i)

(vector) elevation of the ice-bottom surface, vs.

= 0, the plane S0 ; cf. Figs. 2.2. (A.2-8j)

a = 0 /2co = absorption coefficient (sec- 2/meter), cf. (5.18)-[4].(A.2-8k)

Also, we have

O-RT = (complex) beam pattern of R,T; Ao  injected signal
ampl itude. (A.2-81)

In addition, we write
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(1 + 2 + 2 2 y surface slopes (A.2-9a)

n I + + 1 y y )n
normal to surface E, Ox x Y y --z z;

(inward normal = -iZ)  (A.2-9b)

soT' oR 1 iT,Rfo/co = beam-steering wave numbers, cf.

(5.13b), (5.7a), [4]; (A.2-9c)

L 1 z(hT -hR) ' cf. Fig. A.2-2; vector distance

between 0T and 
0R' (A.2-9d)

From Fig. A.2-2, it is readily shown that the unit vectors 1T,- 2 R

become for these bistatic configurations

'JTIS O :R.T/I.RTI : ix cos4cT sineT + %i si~ sineT +1 coe(" 2la

I y neT + s n(RT sine'+z Cosa (A.2-1a)

RRIS = RR -xT T sineT + i(R sin sine -L-)+ izhR}/R

(A.2-1Ob)

where

R R (RT sin 2eT +L o 0 
2RTLosino T sineT + hR) , and

'(o)T :(o)R T /2. (A.2-10c)

[For ioT,_JoR we simply replace RT by RoT, T oT' etc. in (A.2-10).] We

also find it convenient to write

' - -!-OT - (o)R =ix(1 + R (o)T/R(o)R c°Sd6(o)Tsine (o)T
{1+ R)sinp(o)Sine (  -Lo/R (

-y R(o)T/R(o)R) (o)T (o)T L (o)R"

+z (Cosa(o)T + cose(o)R)' (A.2-11)

cf. the exponent in (A.2-7a). [Again, for the reference vectors oT'

2oR'--oT' etc. we se RT' T oT' etc., to get 2uo -oT -oR,

as indicated in (A.2-11).]
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A critically important simplification of our canonical result

(A.2-7) results from the ability to employ "narrow beams" tN.B.), e.g.,

beams narrow enough so that the mutually "illuminated" surface z (= SO )

(i.e., the shaded region in Fig. A.2-2, for example) is sufficiently small

that the spatial geometry (-RT, RR, etc.) for source and receiver change

little over the "illuminated" surface region (- S0 ). Thus, we can replace

3T by RoT, 'T by eoT, etc., and most important, note that the angle-

dependent quantities in F(0 ), (A.2-7a) can also be replaced by the (con-s
stant) reference quantities eoT, oT' etc. This results in a "factoring"

of the beam patterns, in that they now will depend only on their projec-

tions on the surface about 0S , and not on the co'6rdinates of the v

surface away from 0S . [For details, see Section 6, [4].]

A.2-5 Parameters of Eq. (3.6): R "R 1

The various elements of (3.6) are specifically:

r ?2, R mean-square, mean, reflection coefficients (=1, forO0 0

water/air and water/ice interfaces);

S2, S = mean-square, mean- shadowing function, see Sec. 7.4C-

[4], and

x 2Ly= Lx> ' <'L?: ( Lx = r2 2-" etc.): mean-square slopes of the

"low-frequency" ice surface component, cf. Sec. 7,4a-[4], and

2 = <H2: mean-square height (about <c > = 0) of the high-(A.2-12 3.
frequency ice surface component;

WH  = surface wave number intensity spectrum of (cf. (3.5)

and Appendix (A.1)) with

a2p (Ar,O) f W(kJO ) cos(k.ir)
Dc k O 272

A = Eq. (A.2-6);

bo  = cos eoT + cos eoR.
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The directional vector 2a 0 is given by (A.2-11): _-ao, for arbi-

trary angles of illumination and observation.

Important special cases of (A.2-11) are:

(i). Backscatter (R@T): ( 0= 0; 6 R =eT;iR = -T' RoR RoT;

hR hT; %oR =%oT + Tr/2; cf. Fig. 2.2).

-xa =T 2 17Ti sin sin
•2 = 2(i cos oT sinoT + _y i oT i oT + -z cos eoT)

(A.2-13a)
o2 z) oz/2 = 2/cos oT(A.2-13b)

ox oy ozloz'

(ii). Bistatic at the Snell Angle (R T): L 0

6ioR)x = (1oT)x when oT = '/2 = ( oR - i/2);
) when =(R +R )sin Snell (A.2-14a)

R)y = oT)y whe oT + oR) s oT' plane

(-oR)z : ,oT)z when eoR = eoT"

" z cos oT or-o, = 1 cos T (A.2-14b
Lao = 2i osaT , T

(a2 + y2 + a2 )z oz =2 cos 6 .

Otherwise, (A.2.11) is the general relation.

The principal assumptions and approximations pertaining to our

general high-frequency results' (3.6), (3.7), are:

(1). Far-field (Fraunhofer) geometries, cf. Sec. 5.5 of [4], with 7c=O;

(2). Narrow-band signals (so that we may treat time parametrically

in the moving wave (or ice) surface vis-A-vis the acoustic signal);

cf. remarks after Eq. (5.21b) -[4];

(A.2-15)<(3). Narrow beams (cf. Sec. 6.6-r4]; at least one narrow-beam;

',(4). Neglects diffraction terms: k=1: "Diffuse" scatter; k2:

multiple scatter (cf. Sec. 3.3; also Sec. 8.5, of [4]);

59



TD 7375

( 5). Small Rayleigh numbers for the small-scale surface, H:

RH (koboH) << 1;

(6). The surface ( H) is "small-scale," e.g., ZH<<iL: the

correlation distance of the low wave-number component is

much larger than that of the high wave-number contribution;

(A.2-15) (7). The small-scale surface is statistically independent of

the CH-surface component (vide remarks in Sec. 7.3A, Eq.

(7.19) et seq., [4]);

. (8). Both components of the wave surface are essentially homo-

geneous and stationary, at least over the "illuminated"

area and for times long compared to the duration of the

incident signal (in the case of platform motion).
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A endix A.3: Second-Order Probabilit Den i is
0 Mixed or Gauss-Composite K,SP ess, Eq.

Our task here is to see if it is possible to generalize the mixed K,S

process, described in Eq. (2.1) by the weighted sum of two first-order

gaussian pdf's, by a suitably weighted second-order pdf, consisting of a

weighted sum of second-order gaussian processes.

We begin with (2.1) et seq., which we rewrite here for the empirical

fit to the Lyon data for the underwater ice elevation c, as the first-

order pdf

b -( -ms) 2/ 2o2 b2  - 2(-iK) / 2a2

W 1 e + 2 e , (A.3-1)
V27ra~ V21Ta

for which specifically

b = 0.930; b2 = 1-bI = 0.070; (bl+b 2  1)

SS = 4.50(m); mK : 12.5(m) (A.3-1a)

0S 1.00(m); OK = 3.00(m)

The associated characteristic function (c.f.) (2.4), or (A.3-1) is therefore

222 2 2>.ims -crS2/2 im KE-OK& 2

Fl(i&) b1e + b2 e (A.3-2)

" b F(I ) + b F(1) (A.3-2a)

1 is 2 1K

Accordingly, we obtain

dFll)
1-i d- =O bIb mS + b 2 mK : 5.1 (m); (A.3-4a)

d- d2F I

o -
I  - d2 :1  b1 (a + M + b2(OK + m ) 31.3 (m2); (A.3-4b)
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2 2~ -2 2 2 2 2 2

= var C =b + b + b b = (2.38) (mn)1 S efK b1b2( inK)
(A.3-4c)

sica 1,2 1 b b2,1  cf. (A.3-la).
In our effort to construct a second-order pdf, w 2(41,t1;42,t2

which is a valid generalization of the first-order pdf (A.3-1), we must

require that the following conditions be obeyed:

I. The first and second moments derived from w 2 (or the associated c.f.,

F24  are the same as those obtained from the first-order i
(A.3-1), viz., (A.3-4a,b), with the same variance (A.3-4c), e.g.,

var 1= var 2 = var 4, for C now postulated to be homogeneous.

[If this latter condition is removed, then the form of var C 1,2 is

to be the same as that of var c.)

II. When Ar = r2=ri (in the (x,y)-plane of c(r)) becomes infinite, i.e.,

Ar -~±,then

lim F =F(1)F (2) Fi~Fi2(A-)
r- 2-c 1-C 1-C4 i 1 0& )c (.3-5

C2 are (second-order) independent as Ar~ t-, where F1(4 is
given by (A.3-2)!

Condition II then requires that the second-order c .f. F 2Chave the

form

F2= b1 2 S + 1 2 iS 1K 1 21K iS 22K A36

where F has the form (A.3-2a), for inasmuch as lim F -15K Ar-ptco 2S,2K
F1),1Fs1K we see that

*lim F (b (1)+ F(1)),b F(2) +bF (2)' F(1)F(2) , (A.3-7)2-c 1F1 bs 2  1 s 2 2K 1-4 1-C

with F(l), etc., given formally by (A.3-2a). Note that no specific stat-1-4'
istical structure for (;,v has yet been imposed. [Also note that

F ( 2 + 2b b2  b) 2 (b1 + b 2  1, all Ar, as required.]
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Now, let us require that F 1) be given specifically by the gaussian

*first-order composite form (A.3-2) and that S CK and:.;C, are homogeneous

- - processes. Then the (first-order) first- and second moments are given by

(A.3-4), as required. However, according to (A.3-7) this has been es-

tablished only for F -. in the limit Ar -±- We need now to determine

* . whether I (and II) are satisfied in the general case 0 < IAn (±<

Accordingly, for F2-c to reduce to the gaussian form (A.3-2) we require

that K' be second-order gaussian processes, so that (A.3-6) becomes

* explicitly (for these homogeneous cases)

2-; 2 imFS

F b 2e S,l+imSE2oS(T1+2 1 l2)

2- 12

imK 1 +imS 2 2[K~+0S2+SKS12OSKK 2~

1 2

b 2e K E)(A.3-8)

* Clearly, since A im SK 0 , (A.3-8) reduces directly to the form

(A.3-7), as required by II, (A.3-5). Moreover, _" PS'PKS'PSK<l tes
normalized auto- and cross-covaniances are, by definition, bounded as in-

* - dicated. In addition, the quadratic forms in the various exponents of

(A.3-8) must be at least positive semi-definite. This means that no

adjustable scale factors can be introduced as coefficients Of PS$PKS5 etc.,
*~ 2or of a S 'a K etc.

Next, let us obtain the various second-order moments associated with

(A.348). Inasmuch as F here reduces to (A.3-7), with F(l), etc., given
-~ -~~2-;1-C

by (A.3-2), 1 = 2= 4 (A.3-4b), in these homogeneous cases. For the

5covariance K (Ar) we get directly on differentiation of (A.3-8),

K.(r F 12--~** - a (b m +b~m) (A.3-9a)

2 21~ 2-;

b baP 5 + b a PK + b b caK(a S+PS) (A.3-9b)
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1lim
which vanishes, as required, when Ar since 0r PS' (etc.) -0.

We can re~rite (A.3-9b), using bI  1-b2, etc., as

I + b2O2PK +i 2t"SOK(PSK+PKS) - S- K~.(.31~

The behavior as Ar O now needs to be examined. We have for (A.3-10)

K(0) =b o2  b02 +b b(2oo 02 C) 2 _4 2
I s 2 K 1 2 SKo -S K

(A.3-11)

p0 ~ (0) (0)
Po -SK - PKS

This is to be compared with 2 calculated directly from the first-order

c.f. (A.'-2), viz. (A.3-4c):

(var~= c 2 ba?+ b 02 +bb2.(31)
ist-order 1 S 2 K 1b 2 (mS-mK). (A.3-12)

We see at once that it is quite impossible for (A.3-11) and (A.3-12) to be

equal (b1  b2 0 1.0) unless m = mK nd p(O)sK = p(O)Ks +, with aK =

then the two (K,S) processes are second-moment identical, and correlated.

This is not at all physically likely, so we must discard it as an accept-

able model.

We note that changing the weighting, b1b2 (in such a way as to obey

II, cf. (A.3-7)), does not help us achieve agreement between var Ist

(A.3-12) and K (0), (A.3-11). For example, let us replace bIb 2 by

blb 2 (-PsK, blb 2(l-PKS) respectively in (A.3-8). This gives the correct

form for Ar_-±-, (A.3-7), but merely inserts a factor 1-psK 1-PKs with

PSK' PKS in (A.3-10), (A.3-11), which again does not allow an equality

between (A.3-11) and (A.3-12), except in the trivial case noted above.

However, if we set bl=1 (.'.b2=O), or vice versa, we do get agreement,

as we would expect, since only one gauss component is present. Of course,

* the choice b1 l (b2=0) gives a good fit to the first-order data except

for the important tails (represented by the K-gauss process here). In

retaining this model (Model I), we make the comparison indicated in Sec.

2.1, Eq. 2.7: we choose here a single gauss process, , whose mean and

variance are those of the gauss composite process obeying (2.1), or (A.3-1)-

(A.3-4) above. Thus our Models Ia,b are taken to be a single process, with

first-order, first- and second-moments determined from the Lyon data fit (2.1).
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*.- Before we note the implication of the above, we observe that using a

composite gauss process

- =a + (0 4 a < ), (A.3-13)Pcomp al S  a2 K 9 aa 2

rather than the gauss composite process (described by (A.3-1), (A.3-2)),

also does not permit an equivalence between the two (unless a2 = 0, for

example). This is easily seen, for

'comp I a' * , ' ' S = in; a2  b2; - =

(01 bl,b 2 < 1) (A.3-14)

Similarly, we get darectly

var ; op= b 1S+ b V, b Ib 2 ,2K -O 2 (.

S 12 2 2
var comp 1 b 2 2 '2KK(O) + mSmK 0, (A.3-16)

with pKS(0 ) =SK KSO)ai. Consequently,

var a>bb{

-var comp 1 blb2 1 + S _ 20SaKPKS(O) + (mS-mK) 2 > 0, (A.3-17)

so that var2 (> 0) always: these two first-order processes (com--.. so tat var comp > o

posite gauss, (A.3-13), and gauss composite (2.1)) are not the same. We

need proceed no further in the second-order cases: the second-order forms

cannot reduce to a common first-order, (2.1).

In summary, our principal results here and their implications are

concisely:

I. It is not possible to construct a second-order gauss composite process

which reduces to the prescribed first-order process [(2.1)], having

the same second-order (and therefore, higher-order) moments.
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- II. It is possible to construct a single-component process with the same

*first- and second- (first-order) moments. This is the procedure

followed in the substance of this Report, for which Model I is thus

essentially treated as a single-component process, cf. (2.16) ff.,

and (2.7) et seq. The moments used explicitly are obtained by a

combination of fitting to the data and physical-model building.
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